ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Earth System Science Data Discussions. 2017; 1-34. Published 2017 Jun 20. doi: 10.5194/essd-2017-48. [early online release]  (1)
  • Earth System Science Data Discussions. 2018; 1-14. Published 2018 Apr 16. doi: 10.5194/essd-2018-5. [early online release]  (1)
  • Earth System Science Data Discussions. 2018; 1-23. Published 2018 Apr 10. doi: 10.5194/essd-2018-20. [early online release]  (1)
  • Atmospheric Measurement Techniques. 2017; 10(4): 1387-1402. Published 2017 Apr 12. doi: 10.5194/amt-10-1387-2017.  (1)
  • Atmospheric Measurement Techniques. 2020; 13(7): 3909-3922. Published 2020 Jul 21. doi: 10.5194/amt-13-3909-2020.  (1)
  • 110214
  • 122541
  • Geosciences  (5)
Collection
  • Articles  (5)
Publisher
Years
Journal
Topic
  • Geosciences  (5)
  • 1
    Publication Date: 2020-07-21
    Description: Shortwave (SW) fluxes estimated from broadband radiometry rely on empirically gathered and hemispherically resolved fields of outgoing top-of-atmosphere (TOA) radiances. This study aims to provide more accurate and precise fields of TOA SW radiances reflected from clouds over ocean by introducing a novel semiphysical model predicting radiances per narrow sun-observer geometry. This model was statistically trained using CERES-measured radiances paired with MODIS-retrieved cloud parameters as well as reanalysis-based geophysical parameters. By using radiative transfer approximations as a framework to ingest the above parameters, the new approach incorporates cloud-top effective radius and above-cloud water vapor in addition to traditionally used cloud optical depth, cloud fraction, cloud phase, and surface wind speed. A two-stream cloud albedo – serving to statistically incorporate cloud optical thickness and cloud-top effective radius – and Cox–Munk ocean reflectance were used to describe an albedo over each CERES footprint. Effective-radius-dependent asymmetry parameters were obtained empirically and separately for each viewing-illumination geometry. A simple equation of radiative transfer, with this albedo and attenuating above-cloud water vapor as inputs, was used in its log-linear form to allow for statistical optimization. We identified the two-stream functional form that minimized radiance residuals calculated against CERES observations and outperformed the state-of-the-art approach for most observer geometries outside the sun-glint and solar zenith angles between 20 and 70∘, reducing the median SD of radiance residuals per solar geometry by up to 13.2 % for liquid clouds, 1.9 % for ice clouds, and 35.8 % for footprints containing both cloud phases. Geometries affected by sun glint (constituting between 10 % and 1 % of the discretized upward hemisphere for solar zenith angles of 20 and 70∘, respectively), however, often showed weaker performance when handled with the new approach and had increased residuals by as much as 60 % compared to the state-of-the-art approach. Overall, uncertainties were reduced for liquid-phase and mixed-phase footprints by 5.76 % and 10.81 %, respectively, while uncertainties for ice-phase footprints increased by 0.34 %. Tested for a variety of scenes, we further demonstrated the plausibility of scene-wise predicted radiance fields. This new approach may prove useful when employed in angular distribution models and may result in improved flux estimates, in particular dealing with clouds characterized by small or large droplet/crystal sizes.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-12
    Description: The microwave radiometers (MWRs) on board the European Remote Sensing Satellites 1 and 2 (ERS-1 and ERS-2) and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. We use a one-dimensional variational approach to derive TCWV from MWR observations and ERA-Interim background information. A particular focus of this study lies on the intercalibration of the three different instruments, which is performed using constraints on liquid water path (LWP) and TCWV. Comparing our MWR-derived time series of TCWV against TCWV derived from Global Navigation Satellite System (GNSS) we find that the MWR-derived TCWV time series is stable over time. However, observations potentially affected by precipitation show a degraded performance compared to precipitation-free observations in terms of the accuracy of retrieved TCWV. An analysis of WTC shows further that the retrieved WTC is superior to purely ERA-Interim-derived WTC for all satellites and for the entire time series. Even compared to the European Space Agency's (ESA) operational WTC retrievals, which incorporate in addition to MWR additional observational data, the here-described dataset shows improvements in particular for the mid-latitudes and for the two earlier satellites, ERS-1 and ERS-2. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001 (Bennartz et al., 2016).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-20
    Description: New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named: AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. Together with the ensured spectral consistency and rigorous uncertainty propagation though all processing levels, the Cloud_cci datasets approach new benchmarks for climate data records of cloud properties based on passive imaging sensors. For each dataset a Digital Object Identifier has been issued: Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002 Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002 Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002 Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002 Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002 Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-16
    Description: The remote-sensing reflectance (Rrs) is in someway an artificial unit, that is constructed in order to contain the spectral colour information of the water body, but to be hardly influenced by the atmosphere above. In ocean colour remotesensing it is the measure to define the optical properties of the water/water constituents. Rrs is the ratio of water-leaving radiance and down-welling irradiance. It is derived from top-of-atmosphere radiance/reflectance measurements through atmospheric correction. A database with Rrs from radiative 5 transfer simulations is capable to serve as a forward model for the retrieval of water constituents. For the present database the Rrs is simulated in dependency of inherent optical properties (IOPs) representing pure water with different salinities and 5 water constituents (Chlorophyll-a-pigment, Detritus, CDOM (coloured dissolved organic matter), a "big" and a "small" scatterer) in a global range of concentrations. The interpolation points for each IOP were chosen in order to reproduce the entire functional relationship between this particular IOP and the corresponding Rrs. The IOPs are varied independently. The data is available for 9 solar, 9 viewing zenith and 25 azimuth angles. The spectral resolution of the data is 1nm, which allows the convolution to any ocean colour sensors’ spectral response function. The data is produced with the radiative transfer code MOMO (Matrix Operator Model), which simulates the full radiative transfer in atmosphere and ocean. The code is hosted at the institute of space sciences at Freie Universität Berlin and is not publicly available. The look-up table (LUT) is available at: doi:10.1594/WDCC/LUT_for_WDC_I (Kritten et al., 2017).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-10
    Description: A Site Atmospheric State Best Estimate (SASBE) of the temperature profile above the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple sources are combined within the SASBE to generate a high temporal resolution data set that includes an estimate of the uncertainty on every value. The SASBE has been developed to enhance the value of measurements made at the distributed GRUAN site at Lauder and Invercargill (about 180km apart), and to demonstrate a methodology which can be adapted to other distributed sites. Within GRUAN, a distributed site consists of a cluster of instruments at different locations. The temperature SASBE combines measurements from radiosondes and automatic weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is used to calculate a diurnal temperature cycle to which the SASBE converges in the absence of any measurements. The SASBE provides hourly temperature profiles at 16 pressure levels between the surface and 10 hPa for the years 1997 to 2012. Every temperature value has an associated uncertainty which is calculated by propagating the measurement uncertainties, the ERA5 ensemble SDs, and the ERA5 representativeness uncertainty through the retrieval chain. The SASBE has been longterm archived and obtained the following digital object identifier (doi): doi:10.5281/zenodo.1195779 The study demonstrates a method to combine data collected at distributed sites. The resulting best-estimate temperature data product for Lauder is expected to be valuable for satellite and model validation as measurements of atmospheric essential climate variables are sparse in the Southern Hemisphere. The SASBE could, for example, be used to constrain a radiative transfer model to provide top-of-the-atmosphere radiances with traceable uncertainty estimates.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...