ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4)
Collection
Language
  • English  (4)
Years
  • 1
    Publication Date: 2023-12-06
    Description: Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-17
    Description: In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus’ atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL’s VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC’s DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet’s long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-14
    Description: This work reviews the long-term evolution of the atmosphere of Venus, and modulation of its composition by interior/exterior cycling. The formation and evolution of Venus’s atmo- sphere, leading to contemporary surface conditions, remain hotly debated topics, and in- volve questions that tie into many disciplines. We explore these various inter-related mech- anisms which shaped the evolution of the atmosphere, starting with the volatile sources and sinks. Going from the deep interior to the top of the atmosphere, we describe volcanic out- gassing, surface-atmosphere interactions, and atmosphere escape. Furthermore, we address more complex aspects of the history of Venus, including the role of Late Accretion im- pacts, how magnetic field generation is tied into long-term evolution, and the implications of geochemical and geodynamical feedback cycles for atmospheric evolution. We highlight plausible end-member evolutionary pathways that Venus could have followed, from accre- tion to its present-day state, based on modeling and observations. In a first scenario, the planet was desiccated by atmospheric escape during the magma ocean phase. In a second scenario, Venus could have harbored surface liquid water for long periods of time, until its temperate climate was destabilized and it entered a runaway greenhouse phase. In a third scenario, Venus’s inefficient outgassing could have kept water inside the planet, where hy- drogen was trapped in the core and the mantle was oxidized. We discuss existing evidence and future observations/missions required to refine our understanding of the planet’s history and of the complex feedback cycles between the interior, surface, and atmosphere that have been operating in the past, present or future of Venus.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-26
    Description: Venus today is inhospitable at the surface, its average temperature of 750 K being incompatible to the existence of life as we know it. However, the potential for past surface habitability and upper atmosphere (cloud) habitability at the present day is hotly debated, as the ongoing discussion regarding a possible phosphine signature coming from the clouds shows. We review current understanding about the evolution of Venus with special attention to scenarios where the planet may have been capable of hosting microbial life. We compare the possibility of past habitability on Venus to the case of Earth by reviewing the various hypotheses put forth concerning the origin of habitable conditions and the emergence and evolution of plate tectonics on both planets. Life emerged on Earth during the Hadean when the planet was dominated by higher mantle temperatures (by about ), an uncertain tectonic regime that likely included squishy lid/plume-lid and plate tectonics, and proto continents. Despite the lack of well-preserved crust dating from the Hadean and Paleoarchean, we attempt to review current understanding of the environmental conditions during this critical period based on zircon crystals and geochemical signatures from this period, as well as studies of younger, relatively well-preserved rocks from the Paleoarchean. For these early, primitive life forms, the tectonic regime was not critical but it became an important means of nutrient recycling, with possible consequences on the global environment in the long-term, that was essential to the continuation of habitability and the evolution of life. For early Venus, the question of stable surface water is closely related to tectonics. We discuss potential transitions between stagnant lid and (episodic) tectonics with crustal recycling, as well as consequences for volatile cycling between Venus’ interior and atmosphere. In particular, we review insights into Venus’ early climate and examine critical questions about early rotation speed, reflective clouds, and silicate weathering, and summarize implications for Venus’ long-term habitability. Finally, the state of knowledge of the Venusian clouds and the proposed detection of phosphine is covered.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...