ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-16
    Description: Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of − 1.2 × 10−9 and + 1.5 × 10−9, respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:526 ; Allan variance ; Miniaturized atomic clocks ; Frequency stability ; Flight navigation ; GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-05
    Description: Microwave electromagnetic signals from the Global Navigation Satellite System (GNSS) are affected by their travel through the atmosphere: the troposphere, a non-dispersive medium, has an especial impact on the measurements. The long-term variations of the tropospheric refractive index delay the signals, whereas its random variations correlate with the phase measurements. The correlation structure of residuals from GNSS relative position estimation provides a unique opportunity to study specific properties of the turbulent atmosphere. Prior to such a study, the residuals have to be filtered from unwanted additional effects, such as multipath. In this contribution, we propose to investigate the property of the atmospheric noise by using a new methodology combining the empirical mode decomposition with the Hilbert–Huang transform. The chirurgical “designalling of the noise” aims to filter both the white noise and low-frequency noise to extract only the noise coming from tropospheric turbulence. Further analysis of the power spectrum of phase difference can be performed, including the study of the cut-off frequencies and the two slopes of the power spectrum of phase differences. The obtained values can be compared with theoretical expectations. In this contribution, we use Global Positioning System (GPS) phase observations from the Seewinkel network, specially designed to study the impact of atmospheric turbulence on GPS phase observations. We show that (i) a two-slope power spectrum can be found in the residuals and (ii) that the outer scale length can be taken to a constant value, close to the physically expected one and in relation with the size of the eddies at tropospheric height.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Projekt DEAL
    Keywords: ddc:538.7 ; Outer scale length of turbulence ; GPS phase observations ; Double difference residuals ; Matérn model ; Kolmogorov spectrum
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...