ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
  • 2010-2014  (2)
Collection
Keywords
Language
  • English  (2)
Years
Year
  • 1
    Publication Date: 2020-02-12
    Description: On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century1,2. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of 〉8.5.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The Maule earthquake of 27th February 2010 (Mw=8.8) affected ~500 km of the Nazca-South America plate boundary in south-central Chile producing spectacular crustal deformation. Here, we present a detailed estimate of static coseismic surface offsets as measured by survey and continuous GPS, both in near- and farfield regions. Earthquake slip along the megathrust has been inferred from a joint inversion of our new data together with published GPS, InSAR, and land-level changes data using Green's functions generated by a spherical finite-element model with realistic subduction zone geometry. The combination of the data sets provided a good resolution, indicating that most of the slip was well resolved. Coseismic slip was concentrated north of the epicenter with up to 16 m of slip, whereas to the south it reached over 10m within two minor patches. A comparison of coseismic slip with the slip deficit accumulated since the last great earthquake in 1835 suggests that the 2010 event closed a mature seismic gap. Slip deficit distribution shows an apparent local overshoot that highlight cycle-to-cycle variability,which has to be taken into accountwhen anticipating future events from interseismic observations. Rupture propagation was obviously not affected by bathymetric features of the incoming plate. Instead, splay faults in the upper plate seem to have limited rupture propagation in the updip and along-strike directions. Additionally, we found that along-strike gradients in slip are spatially correlated with geometrical inflections of the megathrust. Our study suggests that persistent tectonic features may control strain accumulation and release along subduction megathrusts.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...