ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • Articles (OceanRep)  (5)
Collection
  • Other Sources  (5)
Years
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Cadomian continental arc crust of NE Iran was built during ∼15 Myr of magmatism. • Magmatic flare-up in Iran Cadomia occurred over ∼45 Myr; 570 to 525 Ma. • Geochemical differentiation in “hot zones” built the stratified continental crust of Iran. Abstract The generation and differentiation of continental crust by arc magmatism is strongly influenced by episodes of high magmatic flux (“flare-ups”). Magmatic flare-ups encourage the development of deep crustal hot zones where magmatic differentiation and density stratification combine to form the upper felsic and lower mafic continental crust. Such processes, which are responsible for the construction of continental arc crust, are prolonged events, which build a ∼30-40 km arc crust over tens of million years (∼100 Myr). New zircon U-Pb data reveal that the construction of Cadomian crust from NE Iran occurred over ∼15 ± 0.3 Myr. However, compiled zircon U-Pb ages reveal a prolonged magmatic flare-up of ∼45 Myr; ∼570 to 525 Ma. Basement outcrops in NE Iran expose lower- and upper crust that show how magmatic-geochemical differentiation occurred deep beneath a Cadomian continental arc in a crustal hot zone. Isotopic data for igneous rocks produced during this 45 Myr episode reveal interactions between mantle-derived melts and old continental crust. Synthesis of new and published data indicates that this type of interaction is common during periods of high magmatic fluxes. Our results indicate that differentiation of mafic melts in the lower crust during prolonged magmatic flare-ups plays a key role in building a stratified continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Most arcs show systematic temporal and spatial variations in magmatism with clear shifts in igneous rock compositions between those of the magmatic front (MF) and those in the backarc (BA). It is unclear if similar magmatic polarity is seen for extensional continental arcs. Herein, we use geochemical and isotopic characteristics coupled with zircon U‐Pb geochronology to identify the different magmatic style of the Iran convergent margin, an extensional system that evolved over 100 Myr. Our new and compiled U‐Pb ages indicate that major magmatic episodes for the NE Iran BA occurred at 110–80, 75–50, 50–35, 35–20, and 15–10 Ma. In contrast to NE Iran BA magmatic episodes, compiled data from MF display two main magmatic episodes at 95–75 and 55–5 Ma, indicating more continuous magmatism for the MF than for the BA. We show that Paleogene Iran serves as a useful example of a continental arc under extension. Our data also suggest that there is not a clear relationship between the subduction velocity of Neotethyan Ocean beneath Iran and magmatic activity in Iran. Our results imply that the isotopic compositions of Iran BA igneous rocks do not directly correspond to the changes in tectonic processes or geodynamics, but other parameters such as the composition of lithosphere and melt source(s) should be considered. In addition, changes in subduction zone dynamics and contractional versus extensional tectonic regimes influenced the composition of MF and BA magmatic rocks. These controls diminished the geochemical and isotopic variations between the magmatic front and backarc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Iran and Anatolia were characterized by vigorous Cadomian magmatism at 570–525 Ma. • Zircon Hf isotope data span a very wide εHf(t) variation of +20 to −43.2. • Extension and slab rollback caused Cadomian magmatic flare-up in Iran and Anatolia. Abstract Much of the crust of Iran and Anatolia, including their oldest exposed rocks, formed during an episode of intense convergent margin (arc) magmatism as a result of subduction of oceanic lithosphere beneath northern Gondwana from ca 620 Ma to ca 500 Ma, the Cadomian crust-forming event. Most igneous rocks formed between ca 570 and 525 Ma. Cadomian crust is well-known from western and southern Europe and from eastern North America but is much less well-known from Iran and Anatolia. We use published age and compositional data and contribute new data in order to better understand this ancient magmatic system. Cadomian magmatism included calc-alkaline igneous rocks of arc affinity in the main arc and alkalic igneous rocks that formed in a back-arc setting; these igneous rocks are associated with sedimentary rocks. Geochemical and isotopic modelling reveals that basaltic magmas were the main input, that these formed by partial melting in the upper mantle, and that basaltic magmas evolved further in deep crustal hot zones to form granitic magmas through a combination of assimilating older continental crust and fractional crystalization of basaltic magmas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-14
    Description: New trace-element, radiogenic Sr-Nd-Pb isotopic and geochronological data from Middle-Late Cretaceous Zagros ophiolites of Iran give new insights into the tectono-magmatic history of these supra-subduction zone (SSZ)-type ophiolites. The distribution of Middle-Late Cretaceous SSZ-type ophiolites in Iran comprises two parallel belts: (1) the outer Zagros ophiolitic belt and (2) the inner Zagros ophiolitic belt. These Middle-Late Cretaceous ophiolites were generated by seafloor spreading in what became the fore-arc and back-arc during the subduction initiation event and now define a ∼3000-km-long belt from Cyprus to Turkey, Syria, Iran, the UAE, and Oman. The Zagros ophiolites contain complete (if disrupted) mantle and crustal sequences. Mantle sequences from both outer-belt and inner-belt ophiolites are dominated by dunites, harzburgites, and lherzolites with minor chromitite lenses. Peridotites are also intruded by gabbros and a variety of mafic to minor felsic (plagiogranite and dacite) dikes. Crustal rocks comprise ultramafic-mafic cumulates as well as isotropic gabbros, sheeted dike complexes, pillowed and massive lavas, and felsic rocks. Our new zircon U-Pb ages indicate that the outer-belt and inner-belt ophiolites formed near coevally during the Middle-Late Cretaceous; 100−96 Ma for the outer belt and 105−94 Ma for the inner belt. Both incompatible-element ratios and isotopic data confirm that depleted mantle and variable contributions of subduction components were involved in the genesis of outer-belt and inner-belt rocks. Our data for the outer belt and inner belt along with those from better-studied ophiolites in Cyprus, Turkey, the UAE, and Oman lead to the conclusion that a broad, ∼3000-km-long swath of fore-arc lithosphere was created during Middle-Late Cretaceous time.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-14
    Description: Magmatic activity that accompanied the collision between Arabia and Eurasia at ∼27 Ma, provides unique opportunities for understanding the triggers and magma reservoirs for collisional magmatism and its different styles in magmatic fronts and back-arcs. We present new ages and geochemical-isotopic results for magmatic rocks that formed during the collision between Arabia and Eurasia in NE Iran, which was a back-arc region to the main magmatic arcs of Iran. Our new zircon U-Pb ages indicate that collisional magmatism began at ∼24 Ma in the NE Iran back-arc, although magmatism in this area started in the Late Cretaceous time and continued until the Pleistocene. The collisional igneous rocks are characteristically bimodal, and basaltic-andesitic and dacitic-rhyolitic components show significant isotopic differences; εNd(t) = +4.4 to +7.4 and εHf(t) = +5.4 to +9.5 for mafic rocks and εNd(t) = +0.2 to +8.4 and εHf(t) = +3.4 to +12.3 for silicic rocks. The isotopic values and modeling suggest that fractional crystallization and assimilation-fractional crystallization played important roles in the genesis of felsic rocks in the NE Iran collisional zone. Trace element and isotopic modeling further emphasize that the main triggers of the magmatism in NE Iran comprise a depleted to the enriched mantle and the Cadomian continental crust of Iran. Our results also emphasize the temporal magmatic variations in the NE Iran back-arc from Late Cretaceous to Pleistocene.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...