ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: 5/M 12.0145 ; M 16.18449
    Description / Table of Contents: The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics from the salient physics and its mathematical representation, to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. Contents: 1. Introduction to the magnetotelluric method Alan D. Chave and Alan G. Jones; 2. The theoretical basis for electromagnetic induction Alan D. Chave and Peter Weidelt; 3. Earth's magnetic environment: 3A. Conductivity of Earth materials Rob L. Evans; 3B. Description of the magnetospheric/ionospheric sources Ari Viljanen; 4. The magnetotelluric response function Peter Weidelt and Alan D. Chave; 5. Estimation of the magnetotelluric response function Alan D. Chave; 6. Distortion of magnetotelluric data: its identification and removal Alan G. Jones; 7. The 2D and 3D forward problems Chester Weiss; 8. The inverse problem William L. Rodi and Randall L. Mackie; 9. Instrumentation and field procedures Ian Ferguson; 10. Case histories and geological applications Ian Ferguson, Alan G. Jones and Alan D. Chave
    Type of Medium: Monograph available for loan
    Pages: XVII, 552 S. , Ill., graph. Darst., Kt.
    Edition: 3rd printing
    ISBN: 978-0-521-81927-5
    Classification:
    Geomagnetism, Geoelectromagnetism
    Location: Reading room
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    National Research Council Canada
    Publication Date: 2022-05-25
    Description: Author Posting. © National Research Council Canada, 2005. This article is posted here by permission of National Research Council Canada for personal use, not for redistribution. The definitive version was published in Canadian Journal of Earth Sciences 42 (2005): 479-493, doi:10.1139/E05-016.
    Description: The North American Central Plains (NACP) anomaly in enhanced electric conductivity and its relationship with the Paleoproterozoic Trans-Hudson orogen (THO) has been studied under the auspices of Lithoprobe for over a decade. The NACP anomaly was the first geophysical evidence of the existence of the THO beneath the Phanerozoic sediments of the Central Plains. This anomaly, detected geomagnetically in the late 1960s, has been the subject of a number magnetotelluric studies from the early 1980s. The PanCanadian and Geological Survey of Canada experiments in the 1980s and the Lithoprobe experiments in the 1990s together comprise four east–west and one north–south regional-scale profiles in Saskatchewan perpendicular to the strike of the orogen. In this paper, data from the northernmost line, coincident with seismic line S2B, are analysed and interpreted, and are shown to be key in determining the northern extension of the NACP anomaly. Dimensionality analysis confirms the rotation of deep crustal structures eastward to Hudson Bay, as earlier proposed on the basis of broad-scale geomagnetic studies. On this profile, as with the profile at the edge of the Paleozoic sediments, the NACP anomaly is imaged as lying within the La Ronge domain, in contact with the Rottenstone domain, and structurally above the Guncoat thrust, a late compressional feature. The location of the anomaly together with the surface geology suggests that the anomaly is caused either by sulphide mineralization concentrated in the hinges of folds, by graphite, or by a combination of both. Our interpretation of the data is consistent with that from other profiles, and suggests that the NACP anomaly was formed as a consequence of subduction and collisional processes involving northward subduction of the internides of the THO beneath the Hearne craton. On the southern part of this profile, a resistive structure is identified as the Sask craton, suggesting that Proterozoic rocks are above Archean rocks in the THO.
    Description: XG was supported by a fellowship of the Spanish Ministry of Science: PB92-0808.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1875388 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Lithos 112 (2009): 83-92, doi:10.1016/j.lithos.2009.06.011.
    Description: Southern Africa, particularly the Kaapvaal Craton, is one of the world’s best natural laboratories for studying the lithospheric mantle given the wealth of xenolith and seismic data that exist for it. The Southern African Magnetotelluric Experiment (SAMTEX) was launched to complement these databases and provide further constraints on physical parameters and conditions by obtaining information about electrical conductivity variations laterally and with depth. Initially it was planned to acquire magnetotelluric data on profiles spatially coincident with the Kaapvaal Seismic Experiment, however with the addition of seven more partners to the original four through the course of the experiment, SAMTEX was enlarged from two to four phases of acquisition, and extended to cover much of Botswana and Namibia. The complete SAMTEX dataset now comprises MT data from over 675 distinct locations in an area of over one million square kilometres, making SAMTEX the largest regional-scale MT experiment conducted to date. Preliminary images of electrical resistivity and electrical resistivity anisotropy at 100 km and 200 km, constructed through approximate one-dimensional methods, map resistive regions spatially correlated with the Kaapvaal, Zimbabwe and Angola Cratons, and more conductive regions spatially associated with the neighbouring mobile belts and the Rehoboth Terrain. Known diamondiferous kimberlites occur primarily on the boundaries between the resistive or isotropic regions and conductive or anisotropic regions. Comparisons between the resistivity image maps and seismic velocities from models constructed through surface wave and body wave tomography show spatial correlations between high velocity regions that are resistive, and low velocity regions that are conductive. In particular, the electrical resistivity of the sub-continental lithospheric mantle of the Kaapvaal Craton is determined by its bulk parameters, so is controlled by a bulk matrix property, namely temperature, and to a lesser degree by iron content and composition, and is not controlled by contributions from interconnected conducting minor phases, such as graphite, sulphides, iron oxides, hydrous minerals, etc. This makes quantitative correlations between velocity and resistivity valid, and a robust regression between the two gives an approximate relationship of Vs [m/s] = 0.045*log(resistivity [ohm.m]).
    Description: We especially thank our academic funding sponsors; the Continental Dynamics programme of the U.S. National Science Foundation, the South African Department of Science and Technology, and Science Foundation Ireland.
    Keywords: Sub-continental lithospheric mantle ; Cratonic lithosphere ; Electrical conductivity ; Kaapvaal Craton ; Zimbabwe Craton ; Diamond exploration
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Oxford University Press on behalf of The Royal Astronomical Society
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 196 (2014): 1365-1374, doi:10.1093/gji/ggt484.
    Description: A robust magnetotelluric (MT) inversion algorithm has been developed on the basis of quantile-quantile (q-q) plotting with confidence band and statistical modelling of inversion residuals for the MT response function (apparent resistivity and phase). Once outliers in the inversion residuals are detected in the q-q plot with the confidence band and the statistical modelling with the Akaike information criterion, they are excluded from the inversion data set and a subsequent inversion is implemented with the culled data set. The exclusion of outliers and the subsequent inversion is repeated until the q-q plot is substantially linear within the confidence band, outliers predicted by the statistical modelling are unchanged from the prior inversion, and the misfit statistic is unchanged at a target level. The robust inversion algorithm was applied to synthetic data generated from a simple 2-D model and observational data from a 2-D transect in southern Africa. Outliers in the synthetic data, which come from extreme values added to the synthetic responses, produced spurious features in inversion models, but were detected by the robust algorithm and excluded to retrieve the true model. An application of the robust inversion algorithm to the field data demonstrates that the method is useful for data clean-up of outliers, which could include model as well as data inconsistency (for example, inability to fit a 2-D model to a 3-D data set), during inversion and for objectively obtaining a robust and optimal model. The present statistical method is available irrespective of the dimensionality of target structures (hence 2-D and 3-D structures) and of isotropy or anisotropy, and can operate as an external process to any inversion algorithm without modifications to the inversion program.
    Description: TM was supported by the scientific program of TAIGA (trans-crustal advection and in-situ reaction of global sub-seafloor aquifer) sponsored by the MEXT of Japan, and is supported by the NIPR project KP-7. ADC is supported by US National Science Foundation (NSF) grant EAR1015185.
    Keywords: Inverse theory ; Probability distributions ; Magnetotellurics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 806–827, doi:10.1002/ggge.20075.
    Description: Seismic velocity is a function of bulk vibrational properties of the media, whereas electrical resistivity is most often a function of transport properties of an interconnected minor phase. In the absence of a minor conducting phase then the two should be inter-relatable primarily due to their sensitivity to temperature variation. We develop expressions between shear wave velocity and resistivity for varying temperature, composition, and water content based on knowledge from two kimberlite fields: Jagersfontein (Kaapvaal Craton) and Gibeon (Rehoboth Terrane). We test the expressions through comparison between a new high-resolution regional seismic model, derived from surface wave inversion of earthquake data from Africa and the surrounding regions, and a new electrical image from magnetotelluric (MT) data recorded in SAMTEX (Southern African Magnetotelluric Experiment). The data-defined robust linear regression between the two is found to be statistically identical to the laboratory-defined expression for 40 wt ppm water in olivine. Cluster analysis defines five clusters that are all geographically distinct and tectonically relate to (i) fast, cold, and variably wet Kaapvaal Craton, (ii) fast and wet central Botswana, (iii) slow, warm, and wet Rehoboth Terrane, (iv) moderately fast, cold, and very dry southernmost Angola Craton, and (v) slow, warm, and somewhat dry Damara Belt. From the linear regression expression and the MT image we obtain predicted seismic velocity at 100 km and compare it with that from seismic observations. The differences between the two demonstrate that the linear relationship between Vs and resistivity is appropriate for over 80% of Southern Africa. Finally, using the regressions for varying water content, we infer water content in olivine across Southern Africa.
    Description: We wish to again acknowledge the three main funding agencies, the U.S. National Science Foundation’s Continental Dynamics Program (grant EAR0455242 to RLE), the South African Department of Science and Technology (grant to South African Council for Geoscience), and Science Foundation Ireland (grant 05/RGP/GEO001 to AGJ), for their support. Industry support for SAMTEX from De Beers Group Services, BHP Billiton and Rio Tinto Mining and Exploration resulted in a program far more extensive than originally conceived. S.F. has been supported by the NERC New Investigator grant NE/G000859/1. M.M. wishes to thank Science Foundation Ireland (grant 08/RFP/GEO1693 SAMTEX to AGJ) for support. J.F. wishes to thank Enterprise Ireland (grant Topo-Med to AGJ), Science Foundation Ireland (grant 10/IN.1/I3022 IRETHERMto AGJ), and the JAE-DOC Programme from Spanish CSIC, cofunded by FSE for support.
    Description: 2013-10-05
    Keywords: Continental lithosphere ; Cratons ; Velocity ; Resistivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 118 (2013): 4378–4397, doi:10.1002/jgrb.50258.
    Description: Archean cratons, and the stitching Proterozoic orogenic belts on their flanks, form an integral part of the Southern Africa tectonic landscape. Of these, virtually nothing is known of the position and thickness of the southern boundary of the composite Congo craton and the Neoproterozoic Pan-African orogenic belt due to thick sedimentary cover. We present the first lithospheric-scale geophysical study of that cryptic boundary and define its geometry at depth. Our results are derived from two-dimensional (2-D) and three-dimensional (3-D) inversion of magnetotelluric data acquired along four semiparallel profiles crossing the Kalahari craton across the Damara-Ghanzi-Chobe belts (DGC) and extending into the Congo craton. Two-dimensional and three-dimensional electrical resistivity models show significant lateral variation in the crust and upper mantle across strike from the younger DGC orogen to the older adjacent cratons. We find Damara belt lithosphere to be more conductive and significantly thinner than that of the adjacent Congo craton. The Congo craton is characterized by very thick (to depths of  250 km) and resistive (i.e., cold) lithosphere. Resistive upper crustal features are interpreted as caused by igneous intrusions emplaced during Pan-African magmatism. Graphite-bearing calcite marbles and sulfides are widespread in the Damara belt and account for the high crustal conductivity in the Central Zone. The resistivity models provide new constraints on the southern extent of the greater Congo craton and suggest that the current boundary drawn on geological maps needs revision and that the craton should be extended further south.
    Description: The SAMTEX consortiummembers (Dublin Institute for Advanced Studies, Woods Hole Oceanographic Institution, Council for Geoscience (South Africa), De Beers Group Services, The University of the Witwatersrand, Geological Survey of Namibia, Geological Survey of Botswana, Rio Tinto Mining and Exploration, BHP Billiton, Council for Scientific and Industrial Research (South Africa), and ABB Sweden) are thanked for their funding and logistical support during the four phases of data acquisition. This work is also supported by research grants from the National Science Foundation (EAR-0309584 and EAR-0455242 through the Continental Dynamics Program to R. L. Evans), the Department of Science and Technology, South Africa, and Science Foundation of Ireland (grant 05/RFP/ GEO001to A. G. Jones).
    Description: 2014-02-09
    Keywords: Congo craton ; Damara belt ; Magnetotelluric ; Lithosphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q06010, doi:10.1029/2012GC004055.
    Description: Measurements of electrical conductivity of “slightly damp” mantle minerals from different laboratories are inconsistent, requiring geophysicists to make choices between them when interpreting their electrical observations. These choices lead to dramatically different conclusions about the amount of water in the mantle, resulting in conflicting conclusions regarding rheological conditions; this impacts on our understanding of mantle convection, among other processes. To attempt to reconcile these differences, we test the laboratory-derived proton conduction models by choosing the simplest petrological scenario possible – cratonic lithosphere – from two locations in southern Africa where we have the most complete knowledge. We compare and contrast the models with field observations of electrical conductivity and of the amount of water in olivine and show that none of the models for proton conduction in olivine proposed by three laboratories are consistent with the field observations. We derive statistically model parameters of the general proton conduction equation that satisfy the observations. The pre-exponent dry proton conduction term (σ0) and the activation enthalpy (ΔHwet) are derived with tight bounds, and are both within the broader 2σ errors of the different laboratory measurements. The two other terms used by the experimentalists, one to describe proton hopping (exponent r on pre-exponent water content Cw) and the other to describe H2O concentration-dependent activation enthalpy (term αCw1/3 added to the activation energy), are less well defined and further field geophysical and petrological observations are required, especially in regions of higher temperature and higher water content.
    Description: The SAMTEX data were acquired through funding provided by the Continental Dynamics program of the U.S. National Science Foundation (grant EAR0455242 to RLE), the South African Department of Science and Technology (grant to South African Council for Geoscience), and Science Foundation Ireland (grant 05/RGP/GEO001 to AGJ) plus financial and/or logistical support provided by all members of the SAMTEX consortium. JF was initially supported by an IRCSET grant to AGJ for the TopoMed project (TopoMed: Plate reorganization in the western Mediterranean: Lithospheric causes and topographic consequences) within the European Science Foundation’s TOPOEUROPE EUROCORES (http://www.esf.org/activities/eurocores/ running-programmes/topo-europe.html), and subsequently by an SFI PI grant (10/IN.1/I3022) to AGJ for IRETHERM (www.iretherm.ie).
    Description: 2012-12-14
    Keywords: Kaapvaal craton ; Rehoboth terrane ; Mantle water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B02401, doi:10.1029/2010JB007740.
    Description: Within the framework of the Southern African Magnetotelluric Experiment a focused study was undertaken to gain improved knowledge of the lithospheric geometries and structures of the westerly extension of the Zimbabwe craton (ZIM) into Botswana, with the overarching aim of increasing our understanding of southern African tectonics. The area of interest is located in northeastern Botswana, where Kalahari sands cover most of the geological terranes and very little is known about lithospheric structures and thicknesses. Some of the regional-scale terrane boundary locations, defined based on potential field data, are not sufficiently accurate for local-scale studies. Investigation of the NNW-SSE orientated, 600 km long ZIM line profile crossing the Zimbabwe craton, Magondi mobile belt, and Ghanzi-Chobe belt showed that the Zimbabwe craton is characterized by thick (∼220 km) resistive lithosphere, consistent with geochemical and geothermal estimates from kimberlite samples of the nearby Orapa and Letlhakane pipes (∼175 km west of the profile). The lithospheric mantle of the Ghanzi-Chobe belt is resistive, but its lithosphere is only about 180 km thick. At crustal depths a northward dipping boundary between the Ghanzi-Chobe and the Magondi belts is identified, and two middle to lower crustal conductors are discovered in the Magondi belt. The crustal terrane boundary between the Magondi and Ghanzi-Chobe belts is found to be located further to the north, and the southwestern boundary of the Zimbabwe craton might be further to the west, than previously inferred from the regional potential field data.
    Description: In addition to the funding and logistical support provided by SAMTEX consortium members (Council for Geoscience, Geological Surveys Botswana and Namibia, De Beers Group Services, Rio Tinto Exploration, and BHP Billiton), this work was also supported by research grants from National Science Foundation’s Continental Dynamics program (USA, EAR‐0309584 and EAR‐0455242), the Department of Science and Technology (South Africa), and Science Foundation Ireland (Ireland, grant 05/RFP/GEO001).
    Keywords: Magnetotellurics ; Zimbabwe craton ; Lithospheric structures ; Southern Africa
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics, 38(2), (2019):666-686. doi:10.1029/2018TC005246.
    Description: A magnetotelluric survey in the Barotse Basin of western Zambia shows clear evidence for thinned lithosphere beneath an orogenic belt. The uppermost asthenosphere, at a depth of 60–70 km, is highly conductive, suggestive of the presence of a small amount of partial melt, despite the fact that there is no surface expression of volcanism in the region. Although the data support the presence of thicker cratonic lithosphere to the southeast of the basin, the lithospheric thickness is not well resolved and models show variations ranging from ~80 to 150 km in this region. Similarly variable is the conductivity of the mantle beneath the basin and immediately beneath the cratonic lithosphere to the southeast, although the conductivity is required to be elevated compared to normal lithospheric mantle. In a general sense, two classes of model are compatible with the magnetotelluric data: one with a moderately conductive mantle and one with more elevated conductivities. This latter class would be consistent with the impingement of a stringer of plume‐fed melt beneath the cratonic lithosphere, with the melt migrating upslope to thermally erode lithosphere beneath the orogenic belt that is overlain by the Barotse Basin. Such processes are potentially important for intraplate volcanism and also for development or propagation of rifting as lithosphere is thinned and weakened by melt. Both models show clear evidence for thinning of the lithosphere beneath the orogenic belt, consistent with elevated heat flow data in the region.
    Description: Funding for MT acquisition and analysis was provided by the National Science Foundation grant EAR‐1010432 through the Continental Dynamics Program. The data used in this study are available for download at the IRIS Data Management Center through the DOI links cited in Jones et al. (2003–2008; https://doi.org/10.17611/DP/EMTF/SAMTEX) and Evans et al. (2012; https://doi.org/10.17611/DP/EMTF/PRIDE/ZAM). We would like to thank the field crew from the Geological Survey Department, Zambia, for their assistance in collecting data. Matthew Chamberlain, David Margolius, and Colin Skinner, formerly of Northeastern University, are also thanked for their field assistance. Data are available from the corresponding author pending their submission to the IRIS DMC repository at which point they will be publically available. This is Oklahoma State University, Boone Pickens School of Geology contribution number 2019‐99.
    Description: 2019-07-30
    Keywords: Magnetotellurics ; Resistivity ; Lithosphere ; Mobile belt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Lithos 109 (2009): 131-143, doi:10.1016/j.lithos.2008.10.014.
    Description: Can mineral physics and mixing theories explain field observations of seismic velocity and electrical conductivity, and is there an advantage to combining seismological and electromagnetic techniques? These two questions are at the heart of this paper. Using phenomologically-derived state equations for individual minerals coupled with multi-phase, Hashin-Shtrikman extremal-bound theory we derive the likely shear and compressional velocities and electrical conductivity at three depths, 100 km, 150 km and 200 km, beneath the central part of the Slave craton and beneath the Kimberley region of the Kaapvaal craton based on known petrologically-observed mineral abundances and magnesium numbers, combined with estimates of temperatures and pressures. We demonstrate that there are measurable differences between the physical properties of the two lithospheres for the upper depths, primarily due to the different ambient temperature, but that differences in velocity are negligibly small at 200 km. We also show that there is an advantage to combining seismic and electromagnetic data, given that conductivity is exponentially dependent on temperature whereas the shear and bulk moduli have only a linear dependence in cratonic lithospheric rocks. Focussing on a known discontinuity between harzburgite-dominated and lherzolitic mantle in the Slave craton at a depth of about 160 km, we demonstrate that the amplitude of compressional (P) wave to shear (S) wave conversions would be very weak, and so explanations for the seismological (receiver function) observations must either appeal to effects we have not considered (perhaps anisotropy), or imply that the laboratory data require further refinement.
    Keywords: Archean lithosphere ; Seismic velocity ; Electrical conductivity ; Mineral physics ; Extremal bounds ; Velocity-conductivity relationship
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...