ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Call number: AWI G3-16-90173
    In: Hamburger bodenkundliche Arbeiten ; 65, Bd. 65
    Type of Medium: Series available for loan
    Pages: XVI, 157 S. , Ill., graph. Darst., Kt.
    Series Statement: Hamburger bodenkundliche Arbeiten 65
    Language: German
    Note: Zugl.: Hamburg, Univ., FB Geowiss., Diss., 2011 , INHALT: Inhalt. - Zusammenfassung. - Abstract. - Abkürzungen. - Abbildungen. - Tabellen. - 1 Einleitung und Zielsetzung. - 2 Grundlagen. - 2.1 Die Bedeutung des Stickstoffkreislaufs. - 2.2 Die Nitrifikation - Ein Schlüsselprozess im Stickstoffkreislauf. - 2.2.1 Verbreitung Ammoniak oxidierender Bakterien. - 2.2.2 Verbreitung Ammoniak oxidierender Archaeen. - 2.2.3 Physiologie Ammoniak oxidierender Mikroorganismen. - 2.2.4 Bedeutung Ammoniak oxidierender Mikroorganismen. - 2.3 Psychrophile and psychrotolerante Bakterien. - 2.4 Grundlagen der methodischen Ansätze. - 2.4.1 Bodenklassifikation nach der US Soil Taxonomy. - 2.4.2 Charakterisierung der Ammoniak oxidierenden Mikroorganismen (AOM). - 2.4.3 Nachweis von nitrifizierenden Mikroorganismen. - 2.4.4 Denaturierende Gradienten Gelelektrophorese (DGGE). - 2.4.5 Fluoreszenz-in-situ-Hybridisierung (FISH) und Immunofluoreszenz (IF). - 2.4.6 Reverse Transkriptase RCR. - 3. Beschreibung der Untersuchungsgebiete. - 3.1. Untersuchungsgebiet im kalten Klimat – die Insel Samoylov im Lena-Delta. - 3.2. Untersuchungsgebiet im gemäßigten Klimat – Hahnheide bei Hamburg. - 4 Material und Methoden. - 4.1 Probenahme und bodenkundliche Standortaufnahme. - 4.2 Herkunft der verwendeten Anreicherungskulturen. - 4.3 Bodenchemische und -physikalische Laboruntersuchungen. - 4.4 Quantifizierung von gelösten Stickstoffverbindungen in Böden. - 4.4.1 Ammoniumbestimmungen. - 4.4.2 Nitrit- und Nitratbestimmung. - 4.4.3 Bestimmung der gelösten organischen Stickstoffverbindungen (DON). - 4.5 Nährmedien. - 4.6 Nachweis von mikrobiellen N-Umsetzungen in Böden. - 4.6.1 Bestimmung der potentiellen Nitrifikation. - 4.6.2 Bestimmung der potentiellen Mineralisationsaktivitäten. - 4.6.3 Bestimmungen der Temperaturoptima der Nitrifikation. - 4.6.4 Quantifizierung von nitrifizierenden Mikroorganismen mittels MPN. - 4.7 Kulturführungen von Anreicherungen und Reinkulturen. - 4.7.1. Anreicherung von Ammoniak oxidierenden Mikroorganismen (AOM). - 4.7.2. Kulturführung von Reinkulturen. - 4.7.3 Reinheitstest der Anreicherungs- und Reinkulturen. - 4.8 Mikroskopische Verfahren. - 4.9. Molekularbiologische Methoden. - 4.9.1 DNA Extraktion. - 4.9.2 Polymerasenkettenreaktion (PCR). - 4.9.3 Denaturierende Gradienten Gelelektrophorese (DGGE). - 4.9.4 RNA Isolation und Reverse Transkriptase (RT) PCR Anwendungen. - 4.9.5 Klonierung. - 4.9.6 Sequenzanalysen und Stammbäume. - 4.10 Statistische Verfahren. - 5. Ergebnisse. - 5.1. Bodenkundliche Charakterisierung der untersuchten Permafrostböden. - 5.1.1 Böden der Flussterrasse. - 5.1.2 Böden der jüngeren Überflutungsebene. - 5.1.3 Beschreibung des untersuchten Permafrostaufschlusses am Kliff. - 5.2 Bodenkundliche Charakterisierung der Vergleichsböden im gemäßigten Klimat. - 5.3 Gelöste anorganische Stickstoffverbindungen (DIN). - 5.3.1 DIN in den kalten Klimaten. - 5.3.2 DIN-Gehalte in den Böden der gemäßigten Klimaten. - 5.4. Mineralisation. - 5.4.1 Bestimmung der Mineralisationsraten. - 5.4.2 Mineralisation im Mikrokosmos Ansatz. - 5.5 Potentielle Nitrifikation. - 5.5.1 Gesamte potentielle Nitrifikation in den Böden der kalten Klimaten. - 5.5.2 Archaeale potentielle Nitrifikation in den Böden der kalten Klimate. - 5.5.3 Temperaturabhängige potentielle Ammoniakoxidation. - 5.5.4 Potentielle Nitrifikationsaktivität im gemäßigten Klimat. - 5.6 Quantifizierungen von Nitrifikanten. - 5.7. Molekularbiologische Befunde. - 5.7.1. Diversität des bakteriellen und archaealen 16S-rRNA-Gens. - 5.7.2 Nachweis AOB und AOA mittels der Ammoniakmonooxygenase (AMO) 5.8 DGGE Analysen der Anreichungskulturen. - 5.8.1 Anreicherungen bei 4 °C. - 5.8.2 Anreicherungen bei 10 °C. - 5.8.3 Anreicherungen bei 28 °C. - 5.9 Taxonomie der untersuchten Ammoniak oxidierenden Mikroorganismen (AOM). - 5.9.1 Taxonomie der AOB. - 5.9.2 Taxonomie der AOA. - 5.10 Charakterisierungen der Anreicherungskulturen. - 5.10.1 Morphologische Eigenschaften der Anreicherungskulturen. - 5.10.2 Lichtmikroskopische Untersuchungen der Anreicherungskulturen. - 5.10.3 Temperaturanpassung als physiologische Eigenschaft der AOM. - 5.11 Zusammenfassender Überblick der Ergebnisse. - 6. Diskussion. - 6.1 Permafrostböden und die Prozesse des Stickstoffkreislaufes. - 6.1.1 Stickstoffumsätze aufgrund kleinräumige Variabilität der Böden Samoylovs. - 6.1.2 Verteilung der gelösten anorganischen Stickstoffverbindungen (DIN). - 6.1.3 N-Limitierung in den Permafrostböden. - 6.1.4 Die Prozesse im Küstenaufschluss am Samoylov-Kliff. - 6.2 Die mikrobielle Diversität in den Permafrostböden. - 6.2.1 Diversität in Permafrostböden. - 6.2.3 Unterscheidung AOB und AOA. - 6.2.4 Wer ist wann aktiv? Die Bewertung der RT PCR Ergebnisse. - 6.3 Temperaturanpassung. - 6.4 Möglicher Einfluss des Klimawandels auf die Stickstoffumsetzung. - 7. Schlussbetrachtung und Ausblick. - Literatur. - Veröffentlichungen. - Dank.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: We measured dissolved and particular inorganic nitrogen concentrations in the Ems estuary (Germany). The sampling campaign was conducted on three days in August 2014 (05.08.2014– 07.08.2014) on board of the German research vessel Ludwig Prandtl. Water samples were taken regularly along the salinity gradient of the estuary irrespective of the state of the tide 2 m below the surface. For stations S276 to S280, only the Ferrybox measurements were taken 2 m below the surface. The water samples were taken by a Niskin-Bottle 2 m above the bottom. The water samples were filtered immediately and stored frozen for analysis of dissolved inorganic nutrient and nitrate stable isotope composition. Filtered samples for suspended particular matter (SPM) concentration, particular carbon and nitrogen content of SPM and nitrogen stable isotope composition of SPM were dried at 50°C and also stored frozen. An onboard membrane pump provided the on-line in situ FerryBox system with water from 2 m below the surface. It continuously measured oxygen, salinity, and temperature during our cruise. More information can be found in Sanders and Laanbroek (2018). The aims of the cruise were 1) to study spatial segregation of nitrogen turnover, 2) to identify the dominant nitrogen turnover processes in the water column and 3) to investigate controlling factors of the nitrogen cycle along the Ems estuary.
    Keywords: Carbon, total, particulate; Carbon/Nitrogen ratio; Continuous flow analyser (AA3, Seal Analytics, Germany); Date/Time of event; DEPTH, water; Elemental analyser; Element analyser, Carlo Erba NA2500, coupled with an isotope ratio mass spectrometerFinnigan MAT 252; Ems estuary; Event label; Helmholtz-Zentrum Hereon; Hereon; Latitude of event; Longitude of event; LP201408; LP201408_S274; LP201408_S275; LP201408_S276; LP201408_S277; LP201408_S278; LP201408_S279; LP201408_S280; LP201408_S281; LP201408_S282; LP201408_S283; LP201408_S284; LP201408_S285; LP201408_S286; LP201408_S287; LP201408_S288; LP201408_S289; LP201408_S290; Ludwig Prandtl; Measurement as N2O using isotope-ratio mass spectrometry (IRMS). Bacterial conversion to N2O, so called Denitrifier-method (according to Sigman et al. 2001; Casciotti et al. 2002). Average of the measurement of 2 replicates; Nitrogen, particulate; Nitrogen in ammonium; Nitrogen in nitrate; Nitrogen in nitrite; On-line-in-situ FerryBox-System (Pertersen et al. 2001); Oxygen; Salinity; Sample ID; Sample method; Station label; Suspended particulate matter; Temperature, water; Water sample; WS; δ15N; δ15N, nitrate; δ18O, nitrate
    Type: Dataset
    Format: text/tab-separated-values, 366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; n-alkane; n-fatty acids; Siberia; Yedoma
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: AGE; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Carbon, organic, total; Carbon/Nitrogen ratio; Carbon Preference Index, n-Alkanes; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; Event label; Height above river level; Higher plant n-fatty acids, per unit sediment mass; Lithologic unit/sequence; n-alkane; n-Alkane, average chain length; n-Alkanes, long-chain, per unit mass total organic carbon; n-Alkanes, long-chain per unit sediment mass; n-Alkanes, short-chain, per unit mass total organic carbon; n-Alkanes, short-chain per unit sediment mass; n-fatty acids; n-fatty acids, C21-C23, per unit mass total organic carbon; n-fatty acids, C21-C23, per unit sediment mass; n-fatty acids, long-chain, per unit mass total organic carbon; n-fatty acids, long-chain per unit sediment mass; n-fatty acids, per unit mass total organic carbon; n-fatty acids, per unit sediment mass; n-fatty acids, short-chain, per unit mass total organic carbon; n-fatty acids, short-chain per unit sediment mass; Nitrogen, total; PERM; Ratio; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Sum n-alkanes C14-C35, per unit mass total organic carbon; Sum n-alkanes C14-C35, per unit sediment mass; Yedoma; δ13C, organic matter
    Type: Dataset
    Format: text/tab-separated-values, 545 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: 10-methyl-fatty acid C14:0, per unit mass total organic carbon; 10-methyl-fatty acid C16:0, per unit mass total organic carbon; 10-methyl-fatty acid C17:0, per unit mass total organic carbon; 10-methyl-fatty acid C18:0, per unit mass total organic carbon; 12-methyl-fatty acid C16:0, per unit mass total organic carbon; 12-methyl-fatty acid C18:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C6:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C7:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C8:0, per unit mass total organic carbon; anteiso-fatty acid C11:0, per unit mass total organic carbon; anteiso-fatty acid C12:0, per unit mass total organic carbon; anteiso-fatty acid C13:0, per unit mass total organic carbon; anteiso-fatty acid C15:0, per unit mass total organic carbon; anteiso-fatty acid C17:0, per unit mass total organic carbon; anteiso-fatty acid C17:1, per unit mass total organic carbon; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; cyclo-fatty acid C17, per unit mass total organic carbon; cyclo-fatty acid C19, per unit mass total organic carbon; erosion; Event label; fatty acid C16:1w5, per unit mass total organic carbon; fatty acid C16:1w7cis, per unit mass total organic carbon; fatty acid C16:1w7trans, per unit mass total organic carbon; fatty acid C18:1w7cis, per unit mass total organic carbon; fatty acid C18:1w7trans, per unit mass total organic carbon; fatty acid C18:1w9, per unit mass total organic carbon; fatty acid C18:2w6,9, per unit mass total organic carbon; Height above river level; iso-fatty acid C10:0, per unit mass total organic carbon; iso-fatty acid C11:0, per unit mass total organic carbon; iso-fatty acid C13:0, per unit mass total organic carbon; iso-fatty acid C14:0, per unit mass total organic carbon; iso-fatty acid C15:0, per unit mass total organic carbon; iso-fatty acid C16:0, per unit mass total organic carbon; iso-fatty acid C17:0, per unit mass total organic carbon; iso-fatty acid C17:1, per unit mass total organic carbon; iso-fatty acid C18:0, per unit mass total organic carbon; iso-fatty acid C19:0, per unit mass total organic carbon; methyl-fatty acid C16:0, per unit mass total organic carbon; methyl-fatty acid C17:0, per unit mass total organic carbon; n-alkane; n-fatty acid C10:0, per unit mass total organic carbon; n-fatty acid C11:0, per unit mass total organic carbon; n-fatty acid C12:0, per unit mass total organic carbon; n-fatty acid C13:0, per unit mass total organic carbon; n-fatty acid C14:0, per unit mass total organic carbon; n-fatty acid C15:0, per unit mass total organic carbon; n-fatty acid C16:0, per unit mass total organic carbon; n-fatty acid C17:0, per unit mass total organic carbon; n-fatty acid C17:1, per unit mass total organic carbon; n-fatty acid C18:0, per unit mass total organic carbon; n-fatty acid C18:3, per unit mass total organic carbon; n-fatty acid C19:0, per unit mass total organic carbon; n-fatty acid C19:1, per unit mass total organic carbon; n-fatty acid C20:0, per unit mass total organic carbon; n-fatty acid C20:1, per unit mass total organic carbon; n-fatty acid C21:0, per unit mass total organic carbon; n-fatty acid C22:0, per unit mass total organic carbon; n-fatty acid C23:0, per unit mass total organic carbon; n-fatty acid C24:0, per unit mass total organic carbon; n-fatty acid C24:1, per unit mass total organic carbon; n-fatty acid C25:0, per unit mass total organic carbon; n-fatty acid C26:0, per unit mass total organic carbon; n-fatty acid C27:0, per unit mass total organic carbon; n-fatty acid C28:0, per unit mass total organic carbon; n-fatty acid C29:0, per unit mass total organic carbon; n-fatty acid C30:0, per unit mass total organic carbon; n-fatty acid C32:0, per unit mass total organic carbon; n-fatty acid C8:0, per unit mass total organic carbon; n-fatty acid C9:0, per unit mass total organic carbon; n-fatty acids; PERM; Phytanoic acid, per unit mass total organic carbon; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Standard deviation; Stigmastenone, per unit mass total organic carbon; Yedoma
    Type: Dataset
    Format: text/tab-separated-values, 923 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; Event label; Height above river level; n-alkane; n-Alkane C14, per unit mass total organic carbon; n-Alkane C14, per unit sediment mass; n-Alkane C15, per unit mass total organic carbon; n-Alkane C15, per unit sediment mass; n-Alkane C16, per unit mass total organic carbon; n-Alkane C16, per unit sediment mass; n-Alkane C17, per unit mass total organic carbon; n-Alkane C17, per unit sediment mass; n-Alkane C18, per unit mass total organic carbon; n-Alkane C18, per unit sediment mass; n-Alkane C19, per unit mass total organic carbon; n-Alkane C19, per unit sediment mass; n-Alkane C20, per unit mass total organic carbon; n-Alkane C20, per unit sediment mass; n-Alkane C21, per unit mass total organic carbon; n-Alkane C21, per unit sediment mass; n-Alkane C22, per unit mass total organic carbon; n-Alkane C22, per unit sediment mass; n-Alkane C23, per unit mass total organic carbon; n-Alkane C23, per unit sediment mass; n-Alkane C24, per unit mass total organic carbon; n-Alkane C24, per unit sediment mass; n-Alkane C25, per unit mass total organic carbon; n-Alkane C25, per unit sediment mass; n-Alkane C26, per unit mass total organic carbon; n-Alkane C26, per unit sediment mass; n-Alkane C27, per unit mass total organic carbon; n-Alkane C27, per unit sediment mass; n-Alkane C28, per unit mass total organic carbon; n-Alkane C28, per unit sediment mass; n-Alkane C29, per unit mass total organic carbon; n-Alkane C29, per unit sediment mass; n-Alkane C30, per unit mass total organic carbon; n-Alkane C30, per unit sediment mass; n-Alkane C31, per unit mass total organic carbon; n-Alkane C31, per unit sediment mass; n-Alkane C32, per unit mass total organic carbon; n-Alkane C32, per unit sediment mass; n-Alkane C33, per unit mass total organic carbon; n-Alkane C33, per unit sediment mass; n-Alkane C34, per unit mass total organic carbon; n-Alkane C34, per unit sediment mass; n-Alkane C35, per unit mass total organic carbon; n-Alkane C35, per unit sediment mass; n-fatty acids; PERM; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Yedoma
    Type: Dataset
    Format: text/tab-separated-values, 1294 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brase, Lisa; Bange, Hermann Werner; Lendt, Ralf; Sanders, Tina; Dähnke, Kirstin (2017): High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00162
    Publication Date: 2023-07-06
    Description: Nitrous oxide (N2O) is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%), with an average estuarine N2O flux density of 48 ?mol m-2 d-1 and an overall emission of 0.18 Gg N2O y-1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still remains an important source of N2O to the atmosphere.
    Keywords: Ammonium; Continuous flow analyser (AA3, Seal Analytics, Germany); Date/Time of event; DEPTH, water; Elbe Estuary; Event label; FerryBox system; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; Latitude of event; Longitude of event; LP201504; LP201504_Stat_1_1; LP201504_Stat_1_10; LP201504_Stat_1_11; LP201504_Stat_1_12; LP201504_Stat_1_13; LP201504_Stat_1_14; LP201504_Stat_1_15; LP201504_Stat_1_16; LP201504_Stat_1_17; LP201504_Stat_1_18; LP201504_Stat_1_19; LP201504_Stat_1_2; LP201504_Stat_1_3; LP201504_Stat_1_4; LP201504_Stat_1_5; LP201504_Stat_1_6; LP201504_Stat_1_7; LP201504_Stat_1_8; LP201504_Stat_1_9; LP201504_Stat_10_1; LP201504_Stat_10_10; LP201504_Stat_10_11; LP201504_Stat_10_12; LP201504_Stat_10_13; LP201504_Stat_10_14; LP201504_Stat_10_15; LP201504_Stat_10_16; LP201504_Stat_10_17; LP201504_Stat_10_18; LP201504_Stat_10_19; LP201504_Stat_10_2; LP201504_Stat_10_20; LP201504_Stat_10_3; LP201504_Stat_10_4; LP201504_Stat_10_5; LP201504_Stat_10_6; LP201504_Stat_10_7; LP201504_Stat_10_8; LP201504_Stat_10_9; LP201504_Stat_11_1; LP201504_Stat_11_10; LP201504_Stat_11_11; LP201504_Stat_11_12; LP201504_Stat_11_13; LP201504_Stat_11_14; LP201504_Stat_11_15; LP201504_Stat_11_16; LP201504_Stat_11_17; LP201504_Stat_11_18; LP201504_Stat_11_19; LP201504_Stat_11_2; LP201504_Stat_11_20; LP201504_Stat_11_3; LP201504_Stat_11_4; LP201504_Stat_11_5; LP201504_Stat_11_6; LP201504_Stat_11_7; LP201504_Stat_11_8; LP201504_Stat_11_9; LP201504_Stat_12_1; LP201504_Stat_12_10; LP201504_Stat_12_2; LP201504_Stat_12_3; LP201504_Stat_12_4; LP201504_Stat_12_5; LP201504_Stat_12_6; LP201504_Stat_12_7; LP201504_Stat_12_8; LP201504_Stat_12_9; LP201504_Stat_13_1; LP201504_Stat_13_10; LP201504_Stat_13_11; LP201504_Stat_13_12; LP201504_Stat_13_13; LP201504_Stat_13_14; LP201504_Stat_13_15; LP201504_Stat_13_2; LP201504_Stat_13_3; LP201504_Stat_13_4; LP201504_Stat_13_5; LP201504_Stat_13_6; LP201504_Stat_13_7; LP201504_Stat_13_8; LP201504_Stat_13_9; LP201504_Stat_14_1; LP201504_Stat_14_2; LP201504_Stat_14_3; LP201504_Stat_14_4; LP201504_Stat_14_5; LP201504_Stat_14_6; LP201504_Stat_15_1; LP201504_Stat_15_2; LP201504_Stat_15_3; LP201504_Stat_15_4; LP201504_Stat_17_1; LP201504_Stat_17_10; LP201504_Stat_17_11; LP201504_Stat_17_12; LP201504_Stat_17_13; LP201504_Stat_17_14; LP201504_Stat_17_15; LP201504_Stat_17_16; LP201504_Stat_17_17; LP201504_Stat_17_2; LP201504_Stat_17_3; LP201504_Stat_17_4; LP201504_Stat_17_5; LP201504_Stat_17_6; LP201504_Stat_17_7; LP201504_Stat_17_8; LP201504_Stat_17_9; LP201504_Stat_18_1; LP201504_Stat_18_2; LP201504_Stat_18_3; LP201504_Stat_19_1; LP201504_Stat_19_10; LP201504_Stat_19_11; LP201504_Stat_19_12; LP201504_Stat_19_13; LP201504_Stat_19_14; LP201504_Stat_19_15; LP201504_Stat_19_16; LP201504_Stat_19_2; LP201504_Stat_19_3; LP201504_Stat_19_4; LP201504_Stat_19_5; LP201504_Stat_19_6; LP201504_Stat_19_7; LP201504_Stat_19_8; LP201504_Stat_19_9; LP201504_Stat_2_1; LP201504_Stat_2_10; LP201504_Stat_2_11; LP201504_Stat_2_12; LP201504_Stat_2_13; LP201504_Stat_2_14; LP201504_Stat_2_15; LP201504_Stat_2_16; LP201504_Stat_2_17; LP201504_Stat_2_18; LP201504_Stat_2_19; LP201504_Stat_2_2; LP201504_Stat_2_3; LP201504_Stat_2_4; LP201504_Stat_2_5; LP201504_Stat_2_6; LP201504_Stat_2_7; LP201504_Stat_2_8; LP201504_Stat_2_9; LP201504_Stat_20_1; LP201504_Stat_20_10; LP201504_Stat_20_11; LP201504_Stat_20_12; LP201504_Stat_20_13; LP201504_Stat_20_14; LP201504_Stat_20_15; LP201504_Stat_20_16; LP201504_Stat_20_17; LP201504_Stat_20_18; LP201504_Stat_20_2; LP201504_Stat_20_3; LP201504_Stat_20_4; LP201504_Stat_20_5; LP201504_Stat_20_6; LP201504_Stat_20_7; LP201504_Stat_20_8; LP201504_Stat_20_9; LP201504_Stat_21_1; LP201504_Stat_21_10; LP201504_Stat_21_11; LP201504_Stat_21_12; LP201504_Stat_21_13; LP201504_Stat_21_14; LP201504_Stat_21_15; LP201504_Stat_21_16; LP201504_Stat_21_17; LP201504_Stat_21_18; LP201504_Stat_21_19; LP201504_Stat_21_2; LP201504_Stat_21_20; LP201504_Stat_21_21; LP201504_Stat_21_22; LP201504_Stat_21_23; LP201504_Stat_21_24; LP201504_Stat_21_25; LP201504_Stat_21_26; LP201504_Stat_21_27; LP201504_Stat_21_28; LP201504_Stat_21_29; LP201504_Stat_21_3; LP201504_Stat_21_30; LP201504_Stat_21_31; LP201504_Stat_21_32; LP201504_Stat_21_33; LP201504_Stat_21_34; LP201504_Stat_21_4; LP201504_Stat_21_5; LP201504_Stat_21_6; LP201504_Stat_21_7; LP201504_Stat_21_8; LP201504_Stat_21_9; LP201504_Stat_22_1; LP201504_Stat_22_10; LP201504_Stat_22_11; LP201504_Stat_22_12; LP201504_Stat_22_13; LP201504_Stat_22_14; LP201504_Stat_22_15; LP201504_Stat_22_16; LP201504_Stat_22_17; LP201504_Stat_22_18; LP201504_Stat_22_2; LP201504_Stat_22_3; LP201504_Stat_22_4; LP201504_Stat_22_5; LP201504_Stat_22_6; LP201504_Stat_22_7; LP201504_Stat_22_8; LP201504_Stat_22_9; LP201504_Stat_23_1; LP201504_Stat_23_10; LP201504_Stat_23_11; LP201504_Stat_23_12; LP201504_Stat_23_13; LP201504_Stat_23_14; LP201504_Stat_23_15; LP201504_Stat_23_16; LP201504_Stat_23_2; LP201504_Stat_23_3; LP201504_Stat_23_4; LP201504_Stat_23_5; LP201504_Stat_23_6; LP201504_Stat_23_7; LP201504_Stat_23_8; LP201504_Stat_23_9; LP201504_Stat_24_1; LP201504_Stat_24_10; LP201504_Stat_24_11; LP201504_Stat_24_12; LP201504_Stat_24_13; LP201504_Stat_24_14; LP201504_Stat_24_15; LP201504_Stat_24_16; LP201504_Stat_24_17; LP201504_Stat_24_18; LP201504_Stat_24_19; LP201504_Stat_24_2; LP201504_Stat_24_3; LP201504_Stat_24_4; LP201504_Stat_24_5; LP201504_Stat_24_6; LP201504_Stat_24_7; LP201504_Stat_24_8; LP201504_Stat_24_9; LP201504_Stat_3_1; LP201504_Stat_3_10; LP201504_Stat_3_11; LP201504_Stat_3_12; LP201504_Stat_3_13; LP201504_Stat_3_14; LP201504_Stat_3_15; LP201504_Stat_3_16; LP201504_Stat_3_17; LP201504_Stat_3_18; LP201504_Stat_3_19; LP201504_Stat_3_2; LP201504_Stat_3_20; LP201504_Stat_3_3; LP201504_Stat_3_4; LP201504_Stat_3_5; LP201504_Stat_3_6; LP201504_Stat_3_7; LP201504_Stat_3_8; LP201504_Stat_3_9; LP201504_Stat_4_1; LP201504_Stat_4_10; LP201504_Stat_4_11; LP201504_Stat_4_12; LP201504_Stat_4_13; LP201504_Stat_4_14; LP201504_Stat_4_15; LP201504_Stat_4_16; LP201504_Stat_4_17; LP201504_Stat_4_18; LP201504_Stat_4_19; LP201504_Stat_4_2; LP201504_Stat_4_20; LP201504_Stat_4_3; LP201504_Stat_4_4; LP201504_Stat_4_5; LP201504_Stat_4_6; LP201504_Stat_4_7; LP201504_Stat_4_8; LP201504_Stat_4_9; LP201504_Stat_5_1; LP201504_Stat_5_10; LP201504_Stat_5_11; LP201504_Stat_5_12; LP201504_Stat_5_13; LP201504_Stat_5_14; LP201504_Stat_5_15; LP201504_Stat_5_16; LP201504_Stat_5_17; LP201504_Stat_5_18; LP201504_Stat_5_19; LP201504_Stat_5_2; LP201504_Stat_5_20; LP201504_Stat_5_3; LP201504_Stat_5_4; LP201504_Stat_5_5; LP201504_Stat_5_6; LP201504_Stat_5_7; LP201504_Stat_5_8; LP201504_Stat_5_9; LP201504_Stat_6_1; LP201504_Stat_6_10; LP201504_Stat_6_11; LP201504_Stat_6_12; LP201504_Stat_6_13; LP201504_Stat_6_14; LP201504_Stat_6_15; LP201504_Stat_6_16; LP201504_Stat_6_17; LP201504_Stat_6_18; LP201504_Stat_6_19; LP201504_Stat_6_2; LP201504_Stat_6_20; LP201504_Stat_6_3; LP201504_Stat_6_4; LP201504_Stat_6_5; LP201504_Stat_6_6; LP201504_Stat_6_7; LP201504_Stat_6_8; LP201504_Stat_6_9; LP201504_Stat_7_1; LP201504_Stat_7_10; LP201504_Stat_7_11; LP201504_Stat_7_12; LP201504_Stat_7_13; LP201504_Stat_7_14; LP201504_Stat_7_15; LP201504_Stat_7_16; LP201504_Stat_7_17; LP201504_Stat_7_18; LP201504_Stat_7_19; LP201504_Stat_7_2; LP201504_Stat_7_20; LP201504_Stat_7_3; LP201504_Stat_7_4; LP201504_Stat_7_5; LP201504_Stat_7_6; LP201504_Stat_7_7; LP201504_Stat_7_8; LP201504_Stat_7_9; LP201504_Stat_8_1; LP201504_Stat_8_2; LP201504_Stat_8_3; LP201504_Stat_9_1; LP201504_Stat_9_10; LP201504_Stat_9_11; LP201504_Stat_9_12; LP201504_Stat_9_13; LP201504_Stat_9_14; LP201504_Stat_9_15; LP201504_Stat_9_2; LP201504_Stat_9_3; LP201504_Stat_9_4; LP201504_Stat_9_5; LP201504_Stat_9_6; LP201504_Stat_9_7; LP201504_Stat_9_8; LP201504_Stat_9_9; LP201506; LP201506_Stat_25_1; LP201506_Stat_25_10; LP201506_Stat_25_11; LP201506_Stat_25_12; LP201506_Stat_25_13; LP201506_Stat_25_14; LP201506_Stat_25_15; LP201506_Stat_25_16; LP201506_Stat_25_2; LP201506_Stat_25_3; LP201506_Stat_25_4; LP201506_Stat_25_5;
    Type: Dataset
    Format: text/tab-separated-values, 3585 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research | Supplement to: Jacob, Juliane; Sanders, Tina; Dähnke, Kirstin (2016): Nitrification and Nitrite Isotope Fractionation as a Case Study in a major European River. Biogeosciences, 13(19), 5649-5659, https://doi.org/10.5194/bg-13-5649-2016
    Publication Date: 2023-07-11
    Description: In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, 〉 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.
    Keywords: Ammonium; Carbon, total, particulate; Carbon/Nitrogen ratio; Colorimetric; DATE/TIME; DEPTH, water; Element analyser, Thermo Finnigan flash EA 1112; FerryBox system; Fluorescence determination; Geesthacht weir, Germany; Gravimetric analysis (GF/F filtered); GW2011-2016_Stat_1; Mass spectrometer Finnigan MAT 252; Mass spectrometer ThermoFisher Delta V; Nitrate; Nitrite; Nitrogen, inorganic, dissolved; Nitrogen, total, particulate; Oxygen; pH; Phosphate; Salinity; Sample ID; Seal QuAAtro SFA Analyzer, Seal Analytical, 800 TM; Silicate; Suspended particulate matter; Temperature, water; Water sample; WS; δ15N, ammonium; δ15N, nitrate; δ15N, nitrite; δ15N, total particulate nitrogen; δ18O, nitrate
    Type: Dataset
    Format: text/tab-separated-values, 443 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-09
    Description: We investigated nutrient input and retention in the Elbe River (Germany) at the river/estuarine transition with high agricultural loads of nitrogen. Surface water samples were taken at the weir Geesthacht (stream kilometre 585, 53°25'31''N, 10°20'10''E) from 2011 to 2021. In these samples, we analyzed nutrient concentrations, nitrate dual stable isotopes and suspended particulate matter composition. Usually, samples were taken once or twice per month. Aims of the study were to investigate 1) nitrate retention in the Elbe River and catchment, 2) seasonal dynamic of nitrate stable isotopes and 3) key nitrogen turnover processes and their respective controls over a ten year period.
    Keywords: Carbon, total; Carbon/Nitrogen ratio; Continuous flow analyser (AA3, Seal Analytics, Germany); DATE/TIME; DEPTH, water; Elemental analyzer (EA), Thermo Scientific, FlashEA 1112; Element analyser, Carlo Erba NA2500, coupled with an isotope ratio mass spectrometerFinnigan MAT 252; Fluorescence measurement (OPA), with auto-analyser; Geesthacht weir, Germany; GF/F WHA1825047, Whatman, UK; GW2011-2016_Stat_1; Helmholtz-Zentrum Hereon; Hereon; Measurement as N2O using isotope-ratio mass spectrometry (IRMS). Bacterial conversion to N2O, so called Denitrifier-method (according to Sigman et al. 2001; Casciotti et al. 2002). Average of the measurement of 2 replicates; Nitrogen, total; Nitrogen in ammonium; Nitrogen in nitrate; Nitrogen in nitrite; Phosphorus in orthophosphate; Sample ID; Silicate, dissolved; Suspended particulate matter; Water sample; WS; δ15N, nitrate; δ15N, total nitrogen; δ18O, nitrate
    Type: Dataset
    Format: text/tab-separated-values, 2723 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-28
    Description: Surface water samples of the river Elbe were taken in May 2021 with the vessel Zwergseeschwalbe between Geesthacht and Neu Darchau. Connecting cruises were performed from colleagues from Geesthacht towards Hamburg and from Elster towards Dömitz.
    Keywords: 2021_ELBE_53760; 2021_ELBE_54840; 2021_ELBE_55840; 2021_ELBE_56770; 2021_ELBE_57260; 2021_ELBE_57860; 2021_ELBE_58380; 2021_ELBE_58790; 2021_ELBE_59777; 2021_ELBE_60640; Ammonium; Chl a; Chlorophyll a; DATE/TIME; DEPTH, water; Distance; Elbe; Event label; High Performance Liquid Chromatography (HPLC); Nitrate; nutrient; OPTIMARE Precision Salinometer System; Oxygen; Phosphate; Salinity; SEAL Analytical, AutoAnalyzer 3 HR (AA3 HR), XY-2 Sampler, method No. G-177-96 Rev. 8; Silicate; Station 1; Station 10; Station 2; Station 3; Station 4; Station 5; Station 6; Station 7; Station 8; Station 9; Titration, Winkler; turbidity; Turbidity; Turbidity meter, Hach, 2100N IS; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...