ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-05-29
    Description: CO2 exchange processes in forest ecosystems are of profound ecological and economic importance, meaning there is a need for generally applicable simulation tools. However, process-based ecosystem models, which are in principal suitable for the task, are commonly evaluated at only a few sites and for a limited number of plant species. It is thus often unclear if the processes and parameters involved are suitable for model application at a regional scale. We tested the LandscapeDNDC forest growth module PnET (derived from the Photosynthetic / EvapoTranspiration model) with site-specific as well as multi-site calibrated parameters using independent data sets of eddy covariance measurements across a European transect. Although site-specific parametrization is superior (r2 for pooled Gross Primary Production (GPP) during calibration period: site-specific = 0.93, multi-site = 0.88; r2 for pooled Net Ecosystem Exchange (NEE) during calibration period: site-specific = 0.81, multi-site = 0.73), we show that general parameters are able to represent carbon uptake over periods of several years. The procedure has been applied for the three most dominant European tree species i.e., Scots pine, Norway spruce and European beech. In addition, we discuss potential model improvements with regard to the sensitivity of parameters to site conditions differentiated into climate, nutrient and drought influences.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-02
    Description: The aim of this study was to assess the potential of biomass production by short rotation poplar in Romania without constraining agricultural food production. Located in the eastern part of Europe, Romania provides substantial land resources suitable for bioenergy production. The process-oriented biogeochemical model Landscape DNDC was used in conjunction with the forest-growth model PSIM to simulate the yield of poplar grown in short-rotation coppice at different sites in Romania. The model was validated on five sites with different climatic conditions in Central Europe. Using regional site conditions, with climatic parameters and organic carbon content in soil being the most important, the biomass production potential of poplar plantations was simulated for agricultural areas across Romania. Results indicated a mean productivity of 12.2 ± 0.5 t ha −1  year −1 of poplar coppices on arable land in Romania. The highest yields were simulated for lowland areas in the south-east and west and for the Mures valley, whereas the lowest yields – due to either temperature or water limitations – were found for the mountainous regions, the Danube valley, and the region west of Bucharest. The amount of abandoned arable land in the past 10 years indicates that around 10% of cropping land in production in 1999 (approximately 1 million ha) is available for bioenergy production systems today. Production of poplar grown in short-rotation coppices on these areas would result in a yield of approximately 10 million tons of wood per year. The energy that can be generated by conversion of poplar short rotation coppice biomass may contribute up to approximately 8% of the national energy demand if these set-aside areas are used for lignocellulosic bioenergy.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-09
    Description: Hybrid poplar short-rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated 1) the soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide (N 2 O); 2) the changes in soil organic carbon (SOC) stocks; 3) the gross ammonification and nitrification rates; and 4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one three-year rotation period and two years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N 2 O emissions decreased from 2.2 kg N 2 O-N ha −1 a −1 in the year of SRC establishment to 1.1-1.4 kg N 2 O-N ha −1 a −1 after four years. Likewise, nitrate leaching reduced from 13 to 1.5-8 kg N ha −1 a −1 . Tree coppicing induced a brief pulse of soil N 2 O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within four years by 80% without fertilization (irrespective of irrigation) and by 40% when 40-50 kg N ha −1 a −1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha −1 a −1 (uppermost 25 cm, p = 0.2) was observed five years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-09
    Description: Bioenergy crop production is rapidly expanding in Europe and the potential emissions of biogenic volatile organic compounds (BVOCs) might change the chemical composition of the atmosphere, influencing in turn air quality and regional climate. The environmental impacts of bioenergy crops on air chemistry are difficult to assess due to a lack of accurate field observations. Therefore, we studied BVOC fluxes from a bioenergy maize field in North-Eastern Germany throughout the entire reproductive growth stage of the plants. Combining automated large-chambers and proton transfer reaction mass spectrometry (PTR-MS), we successfully measured fluxes of the highly reactive hydrocarbons monoterpenes (MTs) and sesquiterpenes (SQTs), together with several other BVOCs, including alcohols, aldehydes, ketones, benzenoids, and fatty acid derivatives. Emissions of MTs and SQTs were relatively high (17.0 and 3.6% of total mean molar BVOC emission, respectively) compared to methanol emissions (17.6%). Seasonal MT and SQT fluxes were clearly associated with the flowering phase, originating mainly from the flowering tissues as shown in additional laboratory experiments. From the observations of CO 2 net ecosystem exchange and evapotranspiration rates we could exclude heat and drought stress-induced BVOC emissions. Standard emission factors calculated for all compounds, chemical groups, and growth stages, showed that the temperature dependency of volatile terpenoid fluxes decreased distinctively with proceeding development stage. The results indicate that emissions from large-scale bioenergy maize fields should be better differentiated and considered in regional estimates of aerosol formation. For the implementation of such relation into biogeochemical modelling, it should be considered that not only seasonal weather development but also phenological growth stages are determining the BVOC patterns and emission potentials. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-14
    Description: Forests, Vol. 9, Pages 89: Modeling Ecosystem Services for Park Trees: Sensitivity of i-Tree Eco Simulations to Light Exposure and Tree Species Classification Forests doi: 10.3390/f9020089 Authors: Rocco Pace Peter Biber Hans Pretzsch Rüdiger Grote Ecosystem modeling can help decision making regarding planting of urban trees for climate change mitigation and air pollution reduction. Algorithms and models that link the properties of plant functional types, species groups, or single species to their impact on specific ecosystem services have been developed. However, these models require a considerable effort for initialization that is inherently related to uncertainties originating from the high diversity of plant species in urban areas. We therefore suggest a new automated method to be used with the i-Tree Eco model to derive light competition for individual trees and investigate the importance of this property. Since competition depends also on the species, which is difficult to determine from increasingly used remote sensing methodologies, we also investigate the impact of uncertain tree species classification on the ecosystem services by comparing a species-specific inventory determined by field observation with a genus-specific categorization and a model initialization for the dominant deciduous and evergreen species only. Our results show how the simulation of competition affects the determination of carbon sequestration, leaf area, and related ecosystem services and that the proposed method provides a tool for improving estimations. Misclassifications of tree species can lead to large deviations in estimates of ecosystem impacts, particularly concerning biogenic volatile compound emissions. In our test case, monoterpene emissions almost doubled and isoprene emissions decreased to less than 10% when species were estimated to belong only to either two groups instead of being determined by species or genus. It is discussed that this uncertainty of emission estimates propagates further uncertainty in the estimation of potential ozone formation. Overall, we show the importance of using an individual light competition approach and explicitly parameterizing all ecosystem functions at the species-specific level.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Research Highlights: Investigations of evapotranspiration in a mature mixed beech-fir forest stand do not indicate higher resilience towards intensified drying-wetting cycles as compared with pure beech stands. Background and Objectives: Forest management seeks to implement adaptive measures, for example, the introduction of more drought resistant species into prevailing monospecific stands to minimize forest mortality and monetary losses. In Central Europe this includes the introduction of native silver fir (Abies alba) into monospecific beech (Fagus sylvatica) stands. In order to determine, if the introduction of fir would improve the resilience against drier conditions, this study investigates water relations of a mature pure beech and a mature mixed beech-fir stand under natural as well as reduced water availability. Materials and Methods: Sap flow rates and densities were measured in two consecutive years using the heat ratio method and scaled using stand inventory data and modeling. Results: Transpiration rates estimated from sap flow were significantly higher for beech trees as compared with silver fir which was attributed to the more anisohydric water-use strategy of the beech trees. We estimate that stand evapotranspiration was slightly higher for mixed stands due to higher interception losses from the mixed stand during times of above average water supply. When precipitation was restricted, beech was not able to support its transpiration demands, and therefore there was reduced sap flow rates in the mixed, as well as in the pure stand, whereas transpiration of fir was largely unaffected, likely due to its more isohydric behavior toward water use and access to moister soil layers. Thus, we found the rates of evapotranspiration in the mixed beech-fir stand to be smaller during times with no precipitation as compared with the pure beech stand, which was accountable to the severely reduced transpiration of beech in the mixed stand. Conclusions: We conclude that smaller evapotranspiration rates in the mixed beech-fir stand might not be the result of increased water use efficiency but rather caused by restricted hydraulic conductivity of the root system of beech, making mixed beech-fir stands at this site less resilient towards drought.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-17
    Description: For avoiding competition with food production, marginal land is economically and environmentally highly attractive for biomass production with short-rotation coppices (SRC) of fast-growing tree species such as poplars. Herein, we evaluated the environmental impacts of technological, agronomic and environmental aspects of bioenergy production from hybrid poplar SRC cultivation on marginal land in southern Germany. For this purpose different management regimes were considered within a 21-year lifetime (combining measurements and modeling approaches) by means of a holistic Life Cycle Assessment (LCA). We analyzed two coppicing rotation lengths (7x3 and 3x7 years) and seven nitrogen fertilization rates and included all processes starting from site preparation, planting and coppicing, wood chipping and heat production up to final stump removal. The 7-year rotation cycles clearly resulted in higher biomass yields and reduced environmental impacts such as nitrate (NO 3 ) leaching and soil nitrous oxide (N 2 O) emissions. Fertilization rates were positively related to enhanced biomass accumulation, but these benefits did not counterbalance the negative impacts on the environment due to increased nitrate leaching and N 2 O emissions. Greenhouse gas (GHG) emissions associated with the heat production from poplar SRC on marginal land ranged between 8-46 kg CO 2 -eq. GJ −1 (or 11-57 Mg CO 2 -eq. ha −1 ). However, if the produced wood chips substitute oil heating, up to 123 Mg CO 2 -eq.ha −1 can be saved, if produced in a 7-year rotation without fertilization. Dissecting the entire bioenergy production chain, our study shows that environmental impacts occurred mainly during combustion and storage of wood chips, while technological aspects of establishment, harvesting and transportation played a negligible role. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...