ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: PIK N 531-91-0108
    Type of Medium: Monograph available for loan
    Pages: 40 S.; 29 Abb.
    ISBN: 3540528415 , 0-387-52841-5
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    München : Elsevier, Spektrum Akad. Verl.
    Call number: AWI Bio-18-91524
    Type of Medium: Monograph available for loan
    Pages: XVIII, 700 S. , Ill., zahlr. graph. Darst. , 270 mm x 196 mm
    Edition: 6. Aufl.
    ISBN: 3827415616 (Gb.) , 9783827415615 (Gb.)
    Language: German
    Note: Inhaltsverzeichnis: Vorwort. - 1 Theoretische Grundlagen und Zielsetzung der Physiologie. - 1.1 Das Selbstverständnis der Physiologie. - 1.2 Gesetzesaussagen in der Biologie. - 1.3 Systemtheorie. - 1.4 Prinzipien wissenschaftlichen Arbeitens. - 1.5 Das Kausalitätsprinzip in der Physiologie. - 1.6 Das Problem der Komplexität. - 1.7 Formulierung von Sätzen. - 1.8 Merkmale und Variabilität. - 1.9 Maßsystem und Bezugsgrößen. - 1.10 Darstellung von Daten. - 2 Die Zelle als morphologisches System. - 2.1 Die meristematische Pflanzenzelle. - 2.1.1 Strukturelle Gliederung. - 2.1.2 Endoplasmatisches Reticulum. - 2.1.3 Zellkern (Nucleus). - 2.1.4 Golgi-Apparat. - 2.1.5 Peroxisomen. - 2.1.6 Mitochondrien und Piastiden. - 2.1.7 Cytoskelett. - 2.1.8 Zellwand. - 2.2 Zellteilung. - 2.2.1 Cytokinese und Karyokinese. - 2.2.2 Regulation des Zellcyclus. - 2.2.3 Determination der Teilungsebene. - 2.3 Zelldifferenzierung. - 2.4 Zeil- und Organpolarität. - 2.5 Die Evolution der Pflanzenzelle. - 2.6 Vom einzelligen zum vielzelligen Organismus. - 3 Die Zelle als energetisches System. - 3.1 Der 1. Hauptsatz der Thermodynamik. - 3.2 Der 2. Hauptsatz der Thermodynamik. - 3.3 Die Zelle als offenes System, Fließgleichgewicht. - 3.4 Chemisches Potenzial. - 3.5 Chemisches Potenzial von Wasser. - 3.6 Anwendung des Wasserpotenzialkonzepts auf den Wasserzustand der Zelle. - 3.6.1 Die Zelle als osmotisches System. - 3.6.2 Das Osmometermodell. - 3.6.3 Die Zelle als Osmometeranalogon. - 3.6.4 Das Matrixpotenzial. - 3.6.5 Nomenklatorische Schwierigkeiten. - 3.6.6 Das osmotische Zustandsdiagramm der Zelle (Höfler-Diagramm). - 3.6.7 Die experimentelle Messung von π und ψ. - 3.6.8 Regulation des Wasserzustandes. - 3.7 Chemisches Potenzial von Ionen. - 3.8 Membranpotenzial. - 3.9 Energetik biochemischer Reaktionen. - 3.10 Phosphatübertragung und Phosphorylierungspotenzial. - 3.11 Redoxsysteme und Redoxpotenzial. - 4 Die Zelle als metabolisches System. - 4.1 Biologische Katalyse. - 4.1.1 Aktivierungsenergie. - 4.1.2 Enzymatische Katalyse. - 4.1.3 Enzymkinetik. - 4.1.4 Messung der Enzymaktivität. - 4.1.5 Modulation der Enzymaktivität. - 4.2 Metabolische Kompartimentierung der Zelle. - 4.3 Transportmechanismen an Biomembranen. - 4.3.1 Diffusion und Permeation. - 4.3.2 Spezifität des Membrantransports, Transportkatalyse. - 4.3.3 Transporter, Ionenpumpen und Ionenkanäle. - 4.3.4 Aquaporine. - 4.3.5 Passiver und aktiver Transport. - 4.3.6 Shuttle-Transport. - 4.4 ATP-Synthese an energietransformierenden Biomembranen. - 4.5 Stoffaufnahme in die Zelle. - 4.5.1 Ionenaufnahme. - 4.5.2 Aufnahme von Anelektrolyten. - 4.5.3 Akkumulation von Metaboliten und anorganischen Ionen in der Vacuole. - 4.6 Prinzipien der metabolischen Regulation. - 4.6.1 Ebenen der Regulation. - 4.6.2 Regulation des Enzymgehalts. - 4.6.3 Regulation des Aktivitätszustands bei konstantem Enzymgehalt. - 4.6.4 Intrazelluläre und interzelluläre Signaltransduktion. - 4.6.5 Die Integration der Regulationsmechanismen zum Kontrollsystem. - 5 Die Zelle als wachstumsfähiges System. - 5.1 Biophysikalische Grundlagen des Zellwachstums. - 5.1.1 Hydraulisches Zellwachstum. - 5.1.2 Messung der physikalischen Wachstumsparameter. - 5.2 Wachstum und Zeliwandveränderungen. - 5.2.1 Die strukturelle Dynamik der Primärwand. - 5.2.2 Diffuses Wachstum der Zellwand. - 5.2.3 Lokales Wachstum der Zellwand. - 5.3 Integration des Zellwachstums in vielzelligen Systemen. - 5.3.1 Die Epidermiswand als zellübergreifende Organwand. - 5.3.2 Streckungs-und Kontraktionswachstum bei Wurzeln. - 5.4 Zur Beziehung zwischen Zellwachstum und Zellteilung. - 5.5 Regulation des Streckungswachstums. - 6 Die Zelle als gengesteuertes System. - 6.1 Das Gen - die Einheit der genetischen Information. - 6.2 Die Organisation des Genoms. - 6.2.1 Die drei Genome der Pflanzenzelle. - 6.2.2 Genomstruktur im Zellkern. - 6.2.3 Das plastidäre Genom. - 6.2.4 Das mitochondriale Genom. - 6.3 Die Transkriptionspromotoren, RNA-Polymerasen und RNA-Reifung. - 6.3.1 Transkription nucleärer Gene. - 6.3.2 Transkription plastidärer Gene. - 6.3.3 Transkription mitochondrialer Gene. - 6.3.4 KNA-editing. - 6.4 Proteinsynthese (Translation) und Protein-turnover. - 6.4.1 Translation und Protein-turnover im Cytoplasma. - 6.4.2 Translation und Protein-turnover in Piastiden. - 6.4.3 Translation und Protein-turnover in Mitochondrien. - 6.5 Die Zelle als regulatorisches Netzwerk der Genexpression. - 6.5.1 Regulation nucleärer Gene. - 6.5.2 Regulation plastidärer Gene. - 6.5.3 Regulation mitochondrialer Gene. - 6.5.4 Evolutionäre Adaption von Regulationsstrukturen. - 7 Intrazelluläre Proteinverteilung und Entwicklung der Organellen. - 7.1 Proteinsortierung in der Pflanzenzelle. - 7.1.1 Prinzipien der Proteinsortierung. - 7.1.2 Proteinexport aus der Zelle und Import in die Vacuole. - 7.1.3 Proteintransport in die Mitochondrien. - 7.1.4 Proteintransport in die Piastiden. - 7.1.5 Isosorting - das gleiche Protein für Cytoplasma, Mitochondrien und Piastiden. - 7.1.6 Evolution der Proteintransportsysteme in Mitochondrien und Piastiden. - 7.1.7 Proteintransport in die Peroxisomen. - 7.1.8 Proteintransport in den Zellkern. - 7.2 Entwicklung der Mitochondrien. - 7.3 Entwicklung der Piastiden. - 7.4 Entwicklung der Peroxisomen. - 8 Photosynthese als Funktion des Chloroplasten. - 8.1 Photosynthese als Energiewandlung. - 8.2 Energiewandlung im Chloroplasten. - 8.2.1 Struktur der Chloroplasten. - 8.2.2 Struktur der Thylakoide. - 8.2.3 Photosynthesepigmente. - 8.2.4 Quantenmechanische Grundlagen der Lichtabsorption. - 8.2.5 Funktion der Pigmente. - 8.2.6 Energietransfer in den Pigmentkollektiven. - 8.2.7 Bildung von chemischem Potenzial. - 8.2.8 Funktionelle Verknüpfung der beiden Photosysteme. - 8.3 Die Pigmentsysteme der Rot- und Blaualgen. - 8.4 Photosynthetischer Elektronentransport. - 8.4.1 Offenkettiges System. - 8.4.2 Cyclisches System. - 8.5 Mechanismus der Photophosphorylierung. - 8.6 Der biochemische Bereich. - 8.6.1 Stoffwechselleistungen der Chloroplasten. - 8.6.2 Fixierung und Reduktion von CO2. - 8.6.3 Reduktion und Fixierung von Nitrat und Sulfat. - 8.6.4 Photosynthetische H2-Produktion. - 8.6.5 Photosynthetische N2-Fixierung. - 8.7 Regulation der photosynthetischen Teilprozesse. - 8.7.1 Regulation der Energieverteilung zwischen PSI und PSII. - 8.7.2 Regulation der ATP-Synthase-Aktivität. - 8.7.3 Regulation der CO2-Assimilation im Calvin-Cyclus. - 8.7.4 Koordination von C- und N-Assimilation. - 8.7.5 Fluoreszenzlöschung als Indikatorreaktion für die Effektivität der Photosynthese. - 8.8 Ein kurzer Blick auf die anoxygene Photosynthese der phototrophen Bakterien. - 9 Dissimilation. - 9.1 Energiegewinnung bei der Dissimilation. - 9.2 Dissimilation der Kohlenhydrate. - 9.2.1 Freisetzung chemischer Energie. - 9.2.2 Glycolyse. - 9.2.3 Fermentation (alkoholische Gärung und Milchsäuregärung). - 9.2.4 Citratcyclus und Atmungskette. - 9.2.5 Cyanidresistente Atmung. - 9.2.6 Oxidative Phosphorylierung. - 9.2.7 Elektronentransport an der Plasmamembran. - 9.2.8 Oxidativer (dissimilatorischer) Pentosephosphatcyclus. - 9.3 Photorespiration. - 9.3.1 Lichtatmung und Dunkelatmung. - 9.3.2 Photosynthese von Glycolat. - 9.3.3 Metabolisierung des photosynthetischen Glycolats im C2-Cyclus. - 9.3.4 Glycolatstoffwechsel bei Grün- und Blaualgen. - 9.4 Mobilisierung von Speicherstoffen in Speichergeweben. - 9.4.1 Natur und Lokalisierung der Speicherstoffe. - 9.4.2 Umwandlung von Fett in Kohlenhydrat. - 9.4.3 Metabolismus von Speicherpolysacchariden. - 9.4.4 Metabolismus von Speicherproteinen. - 9.5 Regulation des dissimilatorischen Gaswechsels. - 9.5.1 Atmung: CO2-Abgabe und O2-Aufnahme. - 9.5.2 Der Respiratorische Quotient. - 9.5.3 Regulation des Kohlenhydratabbaus durch Sauerstoff. - 9.5.4 Induktion der Fermentation durch Enzy
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Electrical engineering 31 (1937), S. 442-456 
    ISSN: 1432-0487
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Zusammenfassung In der vorliegenden Arbeit wird ein Kathodenstrahl-Oszillograph beschrieben, der grundsätzlich geeignet ist, den zeitlichen Verlauf des Produktes zweier elektrischer Größen, also z. B. der Leistung, zu messen. Rechnung und Versuch zeigen auch, daß dieses Meßverfahren dem bisher üblichen — Messung mit dem Schleifenoszillographen — bezüglich der Frequenzabhängigkeit (bis zu 106 Hz) überlegen ist. Als Nachteil erweist sich: 1. Die Größe der höchstzulässigen Meßspannung ist begrenzt, ja sie muß sogar in einem bestimmten Verhältnis zur Anodenspannung des KO. stehen. 2. Die erzielten Ausschläge sind —selbst unter Ausnutzung des vollen Meßbereiches —so klein, daß sie in die Größenordnung des unvermeidlichen Fehler des Meßwerks fallen. Verschiedene Vorschläge werden gemacht (örtliche Verlegung der Zeitablenkung und dadurch bedingte Erhöhung des Strommeßbereichs und Verminderung des Netzfehlers, Vergrößerung der Abmessungen des Ablenksystems), die geeignet sind, dem zweiten der erwähnten Übel abzuhelfen; das erste jedoch ist an das Meßprinzip gebunden und bedeutet zum mindesten eine starke Einschränkung für den praktischen Gebrauch des Meßverfahrens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 84 (1992), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seedlings of Scots pine (Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 mM), (NH4)2SO4 (7.5 mM), and NH4NO3 (15 mM) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 mM potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO−3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance (‘protein’). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 64 (1985), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In the present report the suggestion (Paech, K. 1950. Biochemie und Physiologie der sekundären Pflanzenstoffe. - Springer, Berlin, pp. 201–203) was tested that the photosynthetic apparatus requires light protection during the early phase of its development and that this is the reason (in a teleonomic sense) for the transient formation of large amounts of juvenile anthocyanin in outer tissue layers of seedlings and young leaves of deciduous trees and shrubs. Seedlings of two species (Sinapis alba L. and Sesamum indicum L.) which differ in their potential to produce anthocyanin were compared under identical light conditions. The results obtained are compatible with the idea that juvenile anthocyanins are involved in photoprotection. However, the experimental results also indicate that full photostability of the plastid is attained - irrespective of the presence or absence of anthocyanin - once a certain amount of chlorophyll has been accumulated. Thus, photosensitivity of a seedling under natural light conditions is restricted to an early phase of development prior to intense greening.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine (Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 91 (1994), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seedlings of gymnosperms, unlike angiosperms, synthesize chlorophyll(ide) (Chl) in darkness (D). In Scots pine cotyledons (Pinus sylvestris L.) Chl accumulation ceases in D at a low level but Chl accumulation is strongly increased by light, red light (R) being more effective than blue light (B), whereas in Pinus maritima Chi synthesis is almost light-independent. In Scots pine the capacity to form Chl can be increased by R pulses, fully reversible by far-red light, demonstrating the involvement of phytochrome. However, when B- or R–grown seedlings were transferred to D, Chl accumulation stopped immediately irrespective of the level of Pfr (far-red light absorbing form of phytochrome), indicating that the conversion of protochlorophyllide (PChl) is light-dependent. Dose response curves in R and B and simultaneous irradiation with R and B show that R and B are perceived by separate photoreceptors. The immunodetected NADPH-dependent protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), assumed to regulate light-dependent Chl synthesis in angiosperms, is not correlated with the capacity of gymnosperm Chi accumulation in darkness. While two FOR bands could be separated in extracts from dark grown material (38 and 36 kDa) of Pinus sylvestris and P. maritima, only the 38 kDa band disappeared consistently in the light. However. the significance of the more light resistant 36 kDa band for chlorophyll synthesis remains unclear as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 78 (1990), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Prolonged application of ammonium as a source of nitrogen leads to serious physiological and morphological disorders in many plants, including mustard (Sinapis alba L,) seedlings (ammonium toxicity syndrome). Ammonium tolerance was previously observed in mustard seedlings in the presence of considerable amounts of nitrate in the medium. In the present study, the question was addressed as to what extent accumulation of nitrate and ammonium occurs in the mustard seedling and how this relates to ammonium toxicity and tolerance. Emphasis was on light control of accumulation in the attached cotyledons. Both NQ3 and NH4 became strongly accumulated in the mustard cotyledons once the concentration in the medium exceeded 1 mM, In the cotyledons, we measured concentrations 〉 30 mM in the case of nitrate and 〉 50 mM in the case of ammonium 4 days after sowing. Accumulation of inorganic nitrogen in the mustard cotyledons did not depend on photosynthesis nor on intact chloroplasts. However, the rate of nitrate accumulation was strongly stimulated by light, operating through phytochrome, while ammonium accumulation was not affected by light in short-term experiments, i,e, within 24 h and only weakly (and probably indirectly) in long-term light.We conclude that strong interaction between NQ3 and NHJ is characteristic for accumulation of inorganic nitrogen. In the presence of NQ3, accumulation of NH3 is diminished and, to a lesser extent, vice versa. Using [15N]-labelling it was found that incorporation of inorganic nitrogen into organic compounds was stimulated strongly whenever nitrate and ammonium were provided simultaneously. It appears from the data that accumulation of nitrate is strictly controlled by the mustard cotyledons while the accumulation of ammonium is not. The data indicate that the level of ammonium is governed primarily by the rate of ammonium assimilation. Stimulation of ammonium assimilation by simultaneously applied nitrate appears to explain nitrate-mediated ammonium tolerance in the mustard plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 77 (1989), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In many plant species, prolonged application of ammonium (NH4+) as a source of nitrogen results in physiological and morphological disorders (‘ammonium toxicity’). In the mustard (Sinapis alba L.) seedling we have previously observed particularly severe symptoms of ammonium toxicity in the absence of external nitrate (NO3-) or with increasing NH4+/NO3- ratios. In the present investigation we have studied the symptoms of this ‘toxicity’in more depth, i.e. at the morphological, plastidic, enzyme and mRNA levels, in an effort to elucidate the causation of the syndrome.It could be confirmed that the syndrome is specific for ammonium and is not caused by a surplus of nitrogen. The syndrome is caused neither by pH changes in the medium nor by non-specific osmotic effects. Furthermore, the syndrome is not causally related to the fact that nitrate reductase (NR; EC 1.6.6.1.) is induced by ammonium. Development of the syndrome requires neither photosynthesis nor intact plastids. Nevertheless, the plastids are severely affected by ammonium application as is anthocyanin synthesis.Enzymes are differently affected. Among the plastidic enzymes, levels of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GPD; EC 1.2.1.13) are strongly reduced and abundance of translatable mRNA of the small subunit of RuBPCase is decreased, whereas nitrite reductase (NIR; EC 1.7.7.1) is not affected. Among extraplastidic enzymes, the level of chalcone synthase (CHS; EC 2.3.1.74) is strongly reduced, the NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NADGPD; EC 1.2.1.12) level is unaffected, whereas the isocitrate lyase (ICL; EC 4.1.3.1) level is strongly promoted.The fat → carbohydrate transformation seems to be impaired by ammonium: fat degradation is reduced, starch accumulation is strongly inhibited and the levels of glucose and fructose are decreased.It appears from the present data and from results obtained in a companion study (U. Hecht and H. Mohr, in preparation) that the ammonium toxicity syndrome is detectable as soon as ammonium accumulation occurs in the plant. However, the actual mechanism through which the excess ammonium affects metabolism remains unclear at present.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. A prolonged light treatment strongly increases responsivity to Pfr in many instances of phytochrome-controlled biogenesis of flavone or cyanidin glycosides. The present investigation deals with the question of whether light also leads to a corresponding increase of responsivity towards Pfr in such photoresponses which are not related to synthesis of flavonoid pigments in outer tissue layers of seedlings. Phytochrome-mediated accumulation of the chloroplast GPD (glyceraldehyde-3-phosphate dehydrogenase, EC 1.2.1.13) was chosen as a response and the milo shoot (Sorghum vulgare Pers. cv. Weider, hybrid) as an appropriate subject. It was found that responsivity towards Pfr is extremely weak in a dark-grown shoot while prolonged light pretreatments lead to a dramatic increase in responsivity. Blue and UV light are far more effective than red light in eliciting this effect within a few hours. High responsivity is only maintained in the light. When the seedlings are placed in darkness the level of responsivity drops rapidly with a half-life of the order of 2 h. The data allow more complete explanations for intriguing phenomena of plant life under natural light/dark conditions such as shade detection or sensing of light → dark transitions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...