ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Retrospective research and medical data collected on astronauts can be a valuable resource for researchers. This data can be requested from two separate NASA Archives. The Lifetime Surveillance of Astronaut Health (LSAH) holds astronaut medical data, and the Life Sciences Data Archive (LSDA) holds research data. One condition of use of astronaut research and medical data is the requirement that all abstracts, publications and presentations using this data must be reviewed for attributability. All final versions of abstracts, presentations, posters, and manuscripts must be reviewed by LSDA/LSAH prior to submission to a conference, journal, or other entities outside the Principal Investigator (PI) laboratory [including the NASA Export Control Document Availability Authorization (DAA) system]. If material undergoes multiple revisions (e.g., journal editor comments), the new versions must also be reviewed by LSDA/LSAH prior to re-submission to the journal. The purpose of this review is to ensure that no personally identifiable information (PII) is included in materials that are presented in a public venue or posted to the public domain. The procedures for submitting materials for review will be outlined. The process that LSAH/LSDA follows for assessing attributability will be presented. Characteristics and parameter combinations that often prompt attributability concerns will be identified. A published case report for a National Football League (NFL) player will be used to demonstrate how, in a population of public interest, a combination of information can result in inadvertent release of private or sensitive information.
    Keywords: Administration and Management; Aerospace Medicine
    Type: JSC-CN-40645 , 2018 NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.
    Keywords: Aircraft Design, Testing and Performance
    Type: SAE National Aeronautic Meeting; Mar 31, 1959 - Apr 03, 1959; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Accelerated research by NASA has investigated the significant risks incurred during long-duration missions in microgravity for Space Flight-Associated Neuro-ocular Syndrome (SANS, formerly known as Visual Impairments associated with Increased Intracranial Pressure, VIIP) [1]. For our study, NASA's VESsel GENeration Analysis (VESGEN) was used to investigate the role of retinal blood vessels in the etiology of SANS/VIIP. The response of retinal vessels to microgravity was evaluated in astronaut crew members pre and post flight to the International Space Station (ISS), and compared to the response of retinal vessels in healthy volunteers to 6deg head-down tilt during 70 days of bed rest (HDTBR). For the study, we are testing the hypothesis that long-term cephalad fluid shifts resulting in ocular and visual impairments are necessarily mediated in part by retinal blood vessels, and therefore are accompanied by structural adaptations of the vessels. METHODS: Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30deg infrared (IR) Heidelberg Spectralis images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). VESGEN is a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues. The multi-parametric VESGEN analysis generates maps of branching arterial and venous trees quantified by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations according to vascular physiological branching rules. The retrospective study approved by NASA's Institutional Review Board included the analysis of bilateral retinas in eight ISS crew members monitored by routine occupational surveillance and six HDTBR subjects (NASA FARU Campaign 11, for example). The VESGEN analysis was conducted in a blinded fashion, with IR retinal images masked to the subject's identity, ophthalmic and clinical characteristics, and to the temporal sequence of image collection. To complete our study, VESGEN results will be analyzed statistically and correlated with other ophthalmic and medical findings. RESULTS: Preliminary results for changes in the pre to post status of vascular patterning in the retinas of crew members and HDTBR subjects are interestingly opposite. By Df and other vascular branching measures, the space-filling capacity of arterial and venous trees decreased in the majority of crew members (11/16 retinas). In contrast, vascular densities increased in HDTBR subjects by the same parameters (6/10 retinas). To conclude the study, biostatistics and medical analyses will be conducted to quantify and draw conclusions about how the changes associated with flight compare to those associated with HDTBR. CONCLUSIONS: Vascular densities appeared to decrease in the retinas of ISS crew members and increase in HDTBR subjects. Differences in arterial and venous response to cephalad fluid shifts induced by ISS and HDTBR may have resulted from a long-duration conditioning phenomenon (for example, 6-month ISS missions compared to 70 days HDTBR), or the presence of gravity in HDTBR compared to microgravity on the ISS. In addition, increased and decreased vessel diameters for Crew Members and HDTBR, respectively, are subject to limits of im
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN51750 , 2018 NASA Human Research Program Investigators'' Workshop; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Accelerated research by NASA [1] has investigated the significant risks for visual and ocular impairments Spaceflight Associated Neuro-Ocular Syndrome /Visual Impairment/Intracranial Pressure (SANS/VIIP) incurred by microgravity spaceflight, especially long-duration missions. Our study investigates the role of blood vessels in the incidence and etiology of SANS/VIIP within the retinas of Astronaut crewmembers pre-and post-flight to the International Space Station (ISS) by NASA's VESsel GENeration Analysis (VESGEN). The response of retinal vessels in crewmembers to microgravity was compared to that of retinal vessels to Head-Down Tilt (HDT) in subjects undergoing 70-Day Bed Rest. The study tests the proposed hypothesis that cephalad fluid shifts missions, resulting in ocular and visual impairments, are necessarily mediated in part by retinal blood vessels, and are therefore accompanied by significant remodeling of retinal vasculature.Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30 infrared (IR) Heidelberg Spectralis images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues [2]. The weighted, multi-parametric VESGEN analysis generates maps of branching arterial and venous trees and quantification by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations by vascular physiological branching rules [2,3]. The retrospective study approved by NASAs Institutional Review Board included six HDT subjects (NASA Flight Analogs Research Unit [FARU] Campaign 11; for example, [4]) and eight ISS crewmembers monitored by routine occupational surveillance who provided their study consents to NASAs Lifetime Surveillance of Astronaut Health (LSAH). For the initial blinded VESGEN phase, ophthalmic retinal images were masked as to subject identity and pre- and post-status. In the second unblinded phase, VESGEN results were analyzed according to the pre- and post-status of left and right retinas matched to each subject. To complete our study, vascular results will be subjected to NASA biostatistical analysis and correlated with other ophthalmic and medical findings. Preliminary results for changes in the pre- to post-status of vascular patterning in the retinas of crewmembers and HDT subjects are strikingly opposite. By Df and other vascular branching measures, the space-filling capacity of arterial and venous trees decreased in a substantial subset of crewmembers (11/16 retinas). In contrast, vascular densities increased in a substantial subset of HDT subjects by the same parameters (6/10 retinas, currently excluding one anomalous subject). To conclude the study, biostatistical and medical analyses will be of critical importance for investigating the validity of these vascular findings. Vascular densities appeared to decrease in the retinas of crewmembers following ISS Missions, and increase in subjects after HDT. The vascular increases and decreases most likely derive primarily from limits of resolution to the ophthalmic imaging that does not capture the smallest vessels, rather than from vessel growth or atrophy. Differences in arterial and venous response to cephalad fluid shifts induced by ISS and HDT may have resulted from a long-duration conditioning phenomenon (for example, 6-month ISS missions compared to 70-day HDT), or the presence of gravity in HDT compared to microgravity onboard the ISS. To conclude our study, the biostatistical and medical analyses will be of critical importance for investigating the validity and significance of the VESGEN findings.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40700 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Research by NASA [1] established that significant risks for visual and ocular impairments associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. It is well established in physiology and pathology that a fundamental role of the microvasculature is to mediate fluid transfers and remodel actively in response to environmental, immune and other stresses. We therefore hypothesize that remodeling of retinal blood vessels necessarily occurs during accommodation of microgravity-induced fluid shifts prior to subsequent development of visual and ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASA's innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) U.S. crew members before and after ISS missions, and (2) head-down tilt in human subjects before and after 70 days of bed rest. We anticipate that results of the two studies will be complete by the Investigators Workshop (January 22, 2017). METHODS: For the 2013 NASA NRA award, we are concluding the analysis of 30 degree infrared (IR) Heidelberg Spectralis images of retinal blood vessels by VESGEN (patents pending), a mature, automated software developed as a translational and basic vascular research discovery tool, particularly for retinal vascular disease. Subjects of our retrospective study include eight ISS crew members monitored for routine occupational surveillance pre- and post-flight, who provided their study consents to NASAs Lifetime Surveillance of Astronaut Health (LSAH) in coordination with approval of the VESGEN retrospective study protocol by NASAs Institutional Review Board (IRB). The ophthalmic retinal images (average image resolution, approximately 5.6 microns per pixel) are blinded as to pre and post ISS status until the second portion of our study, when VESGEN results will be correlated with other ophthalmic and medical findings for the crew members. Due to image resolution challenges, a novel Matlab tool was developed for aligning pre and post images, and comparing (querying) the two images for differences in the morphology of small vessels. RESULTS: During the past year, LSAH approved the release of all astronaut retinal images to our study for VESGEN analysis. Substantial progress on the initial blinded portion of the study is in place. We anticipate that VESGEN analysis of the 32 Spectralis IR retinal images will be complete for presentation at the 2017 IWS meeting. CONCLUSIONS: Modified retinal vascular patterning may offer early-stage predictions of ocular changes resulting in decreased visual acuity for the VIIP syndrome. Novel insights provided by VESGEN into progressively pathological and blinding vascular remodeling in the human retina currently help to guide other NIH- and NASA-supported therapeutic studies of retinal disease and modeling of the VIIP risk. Results of our vascular investigation of the retinas of astronauts pre- and post-flight may help advance the understanding of both healthy and pathological adaptations to fluid shifts in microgravity associated with the VIIP syndrome. Preliminary results indicate that imaging of higher resolution, such as the new OCT angiography (OCT-A) technology, will be required to determine conclusively the role of the smaller retinal and choroidal vessels in VIIP etiology.
    Keywords: Life Sciences (General); Aerospace Medicine
    Type: ARC-E-DAA-TN38902 , 2017 Human Research Program Investigator''s Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...