ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-02-23
    Description: [1]  It has been posited that the 1975 – 1984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the Húsavík-Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6 – 7 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate-state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long-term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalogue (1995–2011) in northern Iceland. In the analyzed time-frame we find that the rift-induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate-state theory successfully describes the long-term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b-value of the frequency-magnitude distribution changed significantly over time. We conclude that the rift-induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift-induced locking is now being compensated by tectonic forcing.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-04
    Description: We developed an hybrid numerical model of dike propagation in two dimensions solving both for the magma trajectory and velocity as a function of the source overpressure, the magma physical properties (density and viscosity) as well as the crustal density and stress field. This model is used to characterize the influence of surface load changes on magma migration towards the surface. We confirm that surface loading induced by volcanic edifice construction, tends both to attract the magma and to reduce its velocity. In contrast, surface unloading, for instance due to caldera formation, tends to divert the magma to the periphery retarding eruption. In both cases the deflected magma may remain trapped at depth. Amplitudes of dike deflection and magma velocity variation depend on the ratio between the magma driving pressure (source overpressure as well as buoyancy) and the stress field perturbation. Our model is then applied to the July 2001 eruption of Etna, where the final dike deflection had been previously interpreted as due to the topographic load. We show that the velocity decrease observed during the last stage of the propagation can also be attributed to the local stress field. We use the dike propagation duration to estimate the magma overpressure at the dike bottom to be less than 4 MPa. This approach can be potentially used to forecast if, where and when propagating magma might reach the surface when having knowledge on the local stress field, magma physical properties and reservoir overpressure.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-06
    Description: Understanding shallow magma transfer and the related vent distribution is crucial for volcanic hazard. Here we investigate how the stress induced by topographic scarps linked to normal faults affects the distribution of monogenic volcanoes at divergent plate boundaries. Our numerical models of dyke propagation below a fault scarp show that the dykes tend to propagate towards and erupt on the footwall side. This effect, increasing with the scarp height, is stronger for dykes propagating underneath the hanging wall side, and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar and Iceland shows that: 1) the inner rift structure, which shapes the topography, controls shallow dyke propagation; 2) differential loading due to mass redistribution affects magma propagation over a broad scale range (10 0 –10 5 m). Our results find application to any volcanic field with tectonics- or erosion-induced topographic variations, and should be considered in any volcanic hazard assessment.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...