ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 Pharmacy Gap; defined in the Human Research Programs (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific exploration Design Reference Mission (DRM). The proposed approach to building this research portfolio is to seek research projects that concentrate on four major focus areas; (1) Formulary selection, (2) Formulary potency and shelf life, (3) Formulary safety and toxicity, and (4) Novel technology and innovation such as portable real-time chemical analysis innovative drug therapies and dosage and delivery platforms. CONCLUSION: The research pathway has been completed and presented to the HRP. In spring 2017, it is scheduled to be reviewed by a panel of pharmaceutical and clinical experts that will evaluate the scientific merit and operational feasibility of the research pathway, as well as make suggestions for any warranted additions or improvements. Once finalized, the ExMC Element will proceed with the execution of this research pathway with the goal of gathering as much data, and learning as much as possible, to provide a safe and effective pharmaceutical formulary for use during exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37907 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.
    Keywords: Aerospace Medicine; Lunar and Planetary Science and Exploration
    Type: JSC-CN-40551 , Annual NASA Human Research Program Investigators'' Workshop (HRP IWS) 2018; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40552 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2017 - Jan 25, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Historical studies performed by the JSC Pharmacotherapeutics Discipline suggest that exposure to spaceflight conditions may compromise the safety and efficacy of some medications. Follow-on studies have revealed that affected medications demonstrate reductions in active pharmaceutical ingredient (API) concentrations and altered release characteristics. It was hypothesized that the changes in API potency and release were from the medication's exposure to the harsh environmental conditions of spaceflight. Subsequent review of the spaceflight environmental control records from the time of these studies indicated that temperature and humidity levels aboard all spacecraft remained within United States Pharmacopeia (USP) recommended ranges to maintain optimal pharmaceutical stability. Therefore, space radiation was presumed to be the source of observed drug degradation. The Pharmacotherapeutics Discipline conducted a ground analog radiation experiment in 2006 at the NASA Space Radiation Laboratory (NSRL) at Brookhaven to validate this theory and to characterize the effects of high-energy radioactive particles on pharmaceutical stability. These data were never published. Recently, the Exploration Medical Capability (ExMC) Element finalized a research plan (RP) aimed at providing a safe and effective medication formulary for exploration spaceflight. As ExMC begins to design new flight and ground analog radiation studies, further analysis of the 2006 NSRL study data is essential for the characterization of the impact of radiation on medication potency and efficacy in the exploration spaceflight environment.
    Keywords: Space Radiation; Aerospace Medicine
    Type: JSC-CN-40553 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.
    Keywords: Aerospace Medicine
    Type: ASMA Annual Conference; May 13, 2007 - May 17, 2007; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials 〉30ml in size and injection volumes 〉10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.
    Keywords: Aerospace Medicine
    Type: JSC-CN-20579 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: On orbit, ophthalmic anesthetics are used for tonometry and off-nominal corneal examinations. Proparacaine has been flown traditionally. However, the manufacturers recently changed its storage requirements from room temperature storage to refrigerated storage to preserve stability and prolong the shelf-life. Since refrigeration on orbit is not readily available and there were stability concerns about flying proparacaine unrefrigerated, tetracaine was selected as an alternative ophthalmic anesthetic in 2013. We will discuss the challenges encountered flying and using these anesthetics on the International Space Station.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32121 , Annual Scientific Meeting of the Aerospace Medical Association (AsMA) Making a Difference in Aerospace Medicine; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...