ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-07-15
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-07-19
    Description: PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 Pharmacy Gap; defined in the Human Research Programs (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific exploration Design Reference Mission (DRM). The proposed approach to building this research portfolio is to seek research projects that concentrate on four major focus areas; (1) Formulary selection, (2) Formulary potency and shelf life, (3) Formulary safety and toxicity, and (4) Novel technology and innovation such as portable real-time chemical analysis innovative drug therapies and dosage and delivery platforms. CONCLUSION: The research pathway has been completed and presented to the HRP. In spring 2017, it is scheduled to be reviewed by a panel of pharmaceutical and clinical experts that will evaluate the scientific merit and operational feasibility of the research pathway, as well as make suggestions for any warranted additions or improvements. Once finalized, the ExMC Element will proceed with the execution of this research pathway with the goal of gathering as much data, and learning as much as possible, to provide a safe and effective pharmaceutical formulary for use during exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37907 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. NASA recognizes the need to improve capabilities for autonomous care on such missions. As the medical system is developed, it is important to have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources was developed for this reason, and is now a system to gauge the relative importance of medical resources in addressing medical conditions. METHODS: A list of medical conditions of potential concern for an exploration mission was referenced from the Integrated Medical Model, a probabilistic model designed to quantify in-flight medical risk. The diagnostic and treatment modalities required to address best and worst-case scenarios of each medical condition, at the terrestrial standard of care, were entered into a database. This list included tangible assets (e.g. medications) and intangible assets (e.g. clinical skills to perform a procedure). A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program ranked each of the items listed according to its criticality. Data was then obtained from the IMM for the probability of occurrence of the medical conditions, including a breakdown of best case and worst case, during a Mars reference mission. The probability of occurrence information and criticality for each resource were taken into account during analytics performed using Tableau software. RESULTS: A database and weighting system to evaluate all the diagnostic and treatment modalities was created by combining the probability of condition occurrence data with the criticalities assigned by the physician team. DISCUSSION: Exploration Medical Capabilities research at NASA is focused on providing a medical system to support crew medical needs in the context of a Mars mission. MONSTR is a novel approach to performing a quantitative risk analysis that will assess the relative value of individual resources needed for the diagnosis and treatment of various medical conditions. It will provide the operational and research communities at NASA with information to support informed decisions regarding areas of research investment, future crew training, and medical supplies manifested as part of the exploration medical system.
    Keywords: Aerospace Medicine; Computer Programming and Software
    Type: JSC-CN-37911 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40552 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2017 - Jan 25, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Historical studies performed by the JSC Pharmacotherapeutics Discipline suggest that exposure to spaceflight conditions may compromise the safety and efficacy of some medications. Follow-on studies have revealed that affected medications demonstrate reductions in active pharmaceutical ingredient (API) concentrations and altered release characteristics. It was hypothesized that the changes in API potency and release were from the medication's exposure to the harsh environmental conditions of spaceflight. Subsequent review of the spaceflight environmental control records from the time of these studies indicated that temperature and humidity levels aboard all spacecraft remained within United States Pharmacopeia (USP) recommended ranges to maintain optimal pharmaceutical stability. Therefore, space radiation was presumed to be the source of observed drug degradation. The Pharmacotherapeutics Discipline conducted a ground analog radiation experiment in 2006 at the NASA Space Radiation Laboratory (NSRL) at Brookhaven to validate this theory and to characterize the effects of high-energy radioactive particles on pharmaceutical stability. These data were never published. Recently, the Exploration Medical Capability (ExMC) Element finalized a research plan (RP) aimed at providing a safe and effective medication formulary for exploration spaceflight. As ExMC begins to design new flight and ground analog radiation studies, further analysis of the 2006 NSRL study data is essential for the characterization of the impact of radiation on medication potency and efficacy in the exploration spaceflight environment.
    Keywords: Space Radiation; Aerospace Medicine
    Type: JSC-CN-40553 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...