ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-09-13
    Description: We use a databased lithospheric-scale 3D structural model of the Molasse Basin area and the adjacent part of the Alpine orogen to calculate the present-day 3D thermal field of this continental collision zone. With our work we contribute to the understanding of the temperature distribution and the existence of pronounced positive and negative thermal anomalies in the Molasse Basin. We assume conductive heat transport and compare calculated temperatures to measured values and to other published 3D models. Areas where predicted and observed temperatures match closely are interpreted to be dominated by conductive heat transport. For areas, where a poor fit between modelled and observed temperatures has been obtained, we discuss possible reasons of this misfit. In particular, an additional contribution by fluid flow to the heat transport is likely. We conclude that the thermal field is controlled by conduction in the lithospheric mantle and the crystalline crust. Furthermore, we show that the positive and negative thermal anomalies in the Molasse Basin are partly triggered by the structural configuration of the crystalline crust. In particular, the domains of the Tauern Body and the upper part of the Alpine crust on the one hand and the insulating Molasse Basin sediments on the other hand control the shallow thermal field of the Molasse Basin area in response to their contrasting thermal properties. Our results demonstrate that the foreland basin and the adjoining Alps have to be regarded as an interdependent system that needs to be considered adequately if the present-day 3D thermal field of that area is assessed.
    Electronic ISSN: 2195-9706
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by SpringerOpen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-08
    Description: The internal geological structure of the Northeast German Basin (NEGB) is affected by intense salt diapirism and by the presence of several stratified aquifer complexes of regional relevance. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers do exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). Three-dimensional thermohaline numerical simulations are carried out to investigate the effects of such hydrogeological windows in the Rupelian Aquitard on the resulting groundwater, temperature and salinity distributions. Numerical results suggest that hydrogeological windows act as preferential domains of hydraulic interconnectivity between the different aquifers at depth, and enable vigorous heat and mass transport which causes a mixing of warm and saline groundwater with cold and less saline groundwater within both aquifers. In areas where the Rupelian Aquitard confines the Mesozoic aquifer, dissolved solutes from major salt structures are transported laterally giving rise to plumes of variable salinity content ranging from few hundreds of meters to several tens of kilometers. Furthermore, destabilizing thermal buoyancy forces may overwhelm counteracting stabilizing salinity induced forces offside of salt domes. This may result in buoyant upward groundwater flow transporting heat and mass to shallower levels within the same Mesozoic Aquifer.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract Geophysical data acquisition in oceanic domains is challenging, implying measurements with low and/or non‐homogeneous spatial resolution. The evolution of satellite gravimetry and altimetry techniques allows testing 3D density models of the lithosphere, taking advantage of the high spatial resolution and homogeneous coverage of satellites. However, it is not trivial to discretise the source of the gravity field at different depths. Here, we propose a new method for inferring tectonic boundaries at the crustal level. As a novelty, instead of modelling the gravity anomalies and assuming a flat Earth approximation, we model the Vertical Gravity Gradients (VGG) in spherical coordinates, which are especially sensitive to density contrasts in the upper layers of the Earth. To validate the methodology, the complex oceanic domain of the Caribbean region is studied, which includes different crustal domains with a tectonic history since Late Jurassic time. After defining a lithospheric starting model constrained by up‐to‐date geophysical datasets, we tested several a‐priory density distributions and selected the model with the minimum misfits with respect to the VGG calculated from the EIGEN‐6C4 dataset. Additionally, the density of the crystalline crust was inferred by inverting the VGG field. Our methodology enabled us not only to refine, confirm and/or propose tectonic boundaries in the study area, but also to identify a new anomalous buoyant body, located in the South Lesser Antilles subduction zone, and high density bodies along the Greater, Lesser and Leeward Antilles forearcs.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-14
    Description: To investigate and quantify main physical heat driving processes affecting the present-day subsurface thermal field, we study a complex geological setting, the Northeast German Basin (NEGB). The internal geological structure of the NEGB is characterized by the presence of a relatively thick layer of Permian Zechstein salt (up to 5000 m), which forms many salt diapirs and pillows locally reaching nearly the surface. By means of three-dimensional numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity related effects. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces as driven by topographic gradients and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt playing a prominent role. In contrast, buoyancy forces triggered by temperature-dependent fluid density variations are demonstrated to affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-10
    Description: The European Molasse Basin is a Tertiary foreland basin at the northern front of the Alps, which is filled with mostly clastic sediments. These Molasse sediments are underlain by Mesozoic sedimentary successio...
    Electronic ISSN: 2195-9706
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by SpringerOpen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: The European Molasse Basin is a Tertiary foreland basin at the northern front of the Alps, which is filled with mostly clastic sediments. These Molasse sediments are underlain by Mesozoic sedimentary successio...
    Electronic ISSN: 2195-9706
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by SpringerOpen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...