ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-27
    Description: Aberrant activation of oncogenes or loss of tumour suppressor genes opposes malignant transformation by triggering a stable arrest in cell growth, which is termed cellular senescence. This process is finely tuned by both cell-autonomous and non-cell-autonomous mechanisms that regulate the entry of tumour cells to senescence. Whether tumour-infiltrating immune cells can oppose senescence is unknown. Here we show that at the onset of senescence, PTEN null prostate tumours in mice are massively infiltrated by a population of CD11b(+)Gr-1(+) myeloid cells that protect a fraction of proliferating tumour cells from senescence, thus sustaining tumour growth. Mechanistically, we found that Gr-1(+) cells antagonize senescence in a paracrine manner by interfering with the senescence-associated secretory phenotype of the tumour through the secretion of interleukin-1 receptor antagonist (IL-1RA). Strikingly, Pten-loss-induced cellular senescence was enhanced in vivo when Il1ra knockout myeloid cells were adoptively transferred to PTEN null mice. Therapeutically, docetaxel-induced senescence and efficacy were higher in PTEN null tumours when the percentage of tumour-infiltrating CD11b(+)Gr-1(+) myeloid cells was reduced using an antagonist of CXC chemokine receptor 2 (CXCR2). Taken together, our findings identify a novel non-cell-autonomous network, established by innate immunity, that controls senescence evasion and chemoresistance. Targeting this network provides novel opportunities for cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Mitri, Diletta -- Toso, Alberto -- Chen, Jing Jing -- Sarti, Manuela -- Pinton, Sandra -- Jost, Tanja Rezzonico -- D'Antuono, Rocco -- Montani, Erica -- Garcia-Escudero, Ramon -- Guccini, Ilaria -- Da Silva-Alvarez, Sabela -- Collado, Manuel -- Eisenberger, Mario -- Zhang, Zhe -- Catapano, Carlo -- Grassi, Fabio -- Alimonti, Andrea -- England -- Nature. 2014 Nov 6;515(7525):134-7. doi: 10.1038/nature13638. Epub 2014 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2]. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne CH1011, Switzerland. ; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland. ; Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland. ; 1] Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona CH6500, Switzerland [2] Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain. ; Laboratory of Stem Cells in Cancer and Aging, (stemCHUS) Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), E15706 Santiago de Compostela, Spain. ; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; Divisions of BioStatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231-1000, USA. ; 1] Institute for Research in Biomedicine (IRB), Bellinzona CH6500, Switzerland [2] Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20100, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25156255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging/drug effects ; *Cell Movement ; Disease Progression ; Drug Resistance, Neoplasm ; Humans ; Immunity, Innate ; Interleukin 1 Receptor Antagonist Protein/deficiency/metabolism/secretion ; Interleukin-1alpha/immunology/metabolism ; Male ; Mice ; Myeloid Cells/*cytology/*metabolism/transplantation ; PTEN Phosphohydrolase/deficiency/genetics/metabolism ; Prostatic Neoplasms/drug therapy/immunology/metabolism/*pathology ; Receptors, Chemokine/*metabolism ; Receptors, Interleukin-8B/antagonists & inhibitors ; Taxoids/pharmacology ; Tumor Escape ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-24
    Description: MicroRNAs (miRNAs) originate from stem-loop-containing precursors (pre-miRNAs, pri-miRNAs) and mature by means of the Drosha and Dicer endonucleases and their associated factors. The let-7 miRNAs have prominent roles in developmental differentiation and in regulating cell proliferation. In cancer, the tumor suppressor function of let-7 is abrogated by overexpression of Lin28, one of several RNA-binding proteins that regulate let-7 biogenesis by interacting with conserved motifs in let-7 precursors close to the Dicer cleavage site. Using in vitro assays, we have identified a binding site for short modified oligoribonucleotides (‘looptomirs’) overlapping that of Lin28 in pre-let-7a-2. These looptomirs selectively antagonize the docking of Lin28, but still permit processing of pre-let-7a-2 by Dicer. Looptomirs restored synthesis of mature let-7 and inhibited growth and clonogenic potential in Lin28 overexpressing hepatocarcinoma cells, thereby demonstrating a promising new means to rescue defective miRNA biogenesis in Lin28-dependent cancers.
    Keywords: Targeted inhibition of gene function
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...