ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-09-11
    Description: A portable Wavelength Scanned-Cavity Ring-Down Spectrometer (Picarro L2120) fitted with a diffusion sampler (DS-CRDS) was used for the first time to continuously measure δ 18 O and δ 2 H of stream water. The experiment took place during a storm event in a wet tropical agricultural catchment in north-eastern Australia. At a temporal resolution of one minute, the DS-CRDS measured 2160 δ 18 O and δ 2 H values continuously over a period of 36 hours with a precision of ± 0.08 and 0.5 ‰ for δ 18 O and δ 2 H, respectively. Four main advantages in using high temporal resolution stream δ 18 O and δ 2 H data during a storm event are highlighted from this study. Firstly, they enabled us to separate components of the hydrograph, which was not possible using high temporal resolution electrical conductivity data that represented changes in solute transfers during the storm event rather than physical hydrological processes. The results from the hydrograph separation confirm fast groundwater contribution to the stream, with the first 5 hours of increases in stream discharge comprising over 70% pre-event water. Secondly, the high temporal resolution stream δ 18 O and δ 2 H data allowed us to detect a short-lived reversal in stream isotopic values (δ 18 O increase by 0.4 ‰ over 9 minutes), which was observed immediately after the heavy rainfall period. Thirdly, δ 18 O values were used to calculate a time lag of 20 minutes between the physical and chemical stream responses during the storm event. Finally, the hydrograph separation highlights the role of event waters in the runoff transfers of herbicides and nutrients from this heavily cultivated catchment to the Great Barrier Reef. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-11
    Description: ABSTRACT Debate concerning the environmental impact of human arrival in Australia has continued for more than a century. Here we review the evidence for human impact and the mechanisms by which humans may have affected the environment of tropical Australia. We limit our review to tropical Australia because, over three decades ago, it was proposed that the imposition of an anthropogenic fire regime upon human occupation of the Australian continent may have resulted in profound changes in regional vegetation and climate across this region. We conclude that ecological processes and vegetation–fire–climate–human feedbacks do exist that could have driven a significant shift in boundary conditions and ecosystem state at the sub-continental scale through the sustained imposition of an anthropogenic fire regime over tens of millennia. These potential feedbacks operate through the inhibition of forest expansion both directly, by targeted burning at established forest edges and newly irrupted forest patches, and indirectly, through lengthening of the dry season because of changes to the timing of burning. However, the impact of any such anthropogenic forcing may have been entirely overshadowed by the effects of natural climate change and variability, as well as the generally low nutrient status of Australian soils. A robust assessment of the degree to which the environment of tropical Australia at the large scale has been modified from its ‘natural’ state because of human occupation will require new, coordinated collaborations between indigenous traditional landowners, archaeologists, anthropologists, geochronologists, geoscientists, ecologists, climatologists and modellers.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract High‐frequency stable isotope data are useful for validating atmospheric moisture circulation models and provide improved understanding of the mechanisms controlling isotopic compositions in tropical rainfall. Here we present a near‐continuous 6‐month record of O‐ and H‐isotope compositions in both water vapour and daily rainfall from Northeast Australia measured by laser spectroscopy. The data set spans both Wet and Dry Seasons to help address a significant data and knowledge gap in the southern hemisphere tropics. We interpret the isotopic records for water vapour and rainfall in the context of contemporaneous meteorological observations. Surface air moisture provided near‐continuous tracking of the links between isotopic variations and meteorological events on local to regional spatial scales. Power spectrum analysis of the isotopic variation showed a range of significant periodicities, from hourly to monthly scales and cross‐wavelet analysis identified significant regions of common power for hourly‐averaged water vapour isotopic composition and relative humidity, wind direction and solar radiation. Relative humidity had the greatest sub‐diurnal influence on isotopic composition. On longer timescales (weeks to months) isotope variability was strongly correlated with both wind direction and relative humidity. The high‐frequency records showed diurnal isotopic variations in O‐ and H‐isotope compositions due to local dew formation and, for deuterium excess, as a result of evapotranspiration. Several significant negative isotope anomalies on a daily scale were associated with the activity of regional mesoscale convective systems and the occurrence of two tropical cyclones. Calculated air parcel back‐trajectories identified the predominant moisture transport paths from the Southwest Pacific Ocean while moisture transport from northerly directions occurred mainly during the Wet Season monsoonal air flow. Water vapour isotope compositions reflected the same meteorological events as recorded in rainfall isotopes but provided much more detailed and continuous information on atmospheric moisture cycling than the intermittent isotopic record provided by rainfall. Improved global coverage of stable isotope data for atmospheric water vapour is likely to improve simulations of future changes to climate drivers of the hydrological cycle.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-03
    Description: Annual Review of Earth and Planetary Sciences Volume 43, Page 273-298, May 2015, ISSN 0084-6597, eISSN 1545-4495.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-10
    Description: Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. Scientific Reports 5 doi: 10.1038/srep09665
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-15
    Description: We examine the influence of climate, soil properties and vegetation characteristics on soil organic carbon (SOC) along a transect of West African ecosystems sampled across a precipitation gradient on contrasting soil types stretching from Ghana (15°N) to Mali (7°N). Our findings derive from a total of 1108 soil cores sampled over 14 permanent plots. The observed pattern in SOC stocks reflects the very different climatic conditions and contrasting soil properties existing along the latitudinal transect. The combined effects of these factors strongly influence vegetation structure. SOC stocks in the first 2 m of soil ranged from 20 Mg C ha −1 for a Sahelian savanna in Mali to over 120 Mg C ha −1 for a transitional forest in Ghana. The degree of interdependence between soil bulk density (SBD) and soil properties is highlighted by the strong negative relationships observed between SBD and SOC ( r 2  〉 0.84). A simple predictive function capable of encompassing the effect of climate, soil properties and vegetation type on SOC stocks showed that available water and sand content taken together could explain 0.84 and 0.86 of the total variability in SOC stocks observed to 0.3 and 1.0 m depth respectively. Used in combination with a suitable climatic parameter, sand content is a good predictor of SOC stored in highly weathered dry tropical ecosystems with arguably less confounding effects than provided by clay content. There was an increased contribution of resistant SOC to the total SOC pool for lower rainfall soils, this likely being the result of more frequent fire events in the grassier savannas of the more arid regions. This work provides new insights into the mechanisms determining the distribution of carbon storage in tropical soils and should contribute significantly to the development of robust predictive models of biogeochemical cycling and vegetation dynamics in tropical regions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-31
    Description: Article Global megafaunal extinctions took place in the late Quaternary, yet the relative impact of climate and humans in the faunal collapse is unclear. Here, the authors show that megafaunal extinctions in Australia were independent of climate variability and took place approximately 13,500 years after human arrival. Nature Communications doi: 10.1038/ncomms10511 Authors: Frédérik Saltré, Marta Rodríguez-Rey, Barry W. Brook, Christopher N Johnson, Chris S. M. Turney, John Alroy, Alan Cooper, Nicholas Beeton, Michael I. Bird, Damien A. Fordham, Richard Gillespie, Salvador Herrando-Pérez, Zenobia Jacobs, Gifford H. Miller, David Nogués-Bravo, Gavin J. Prideaux, Richard G. Roberts, Corey J. A. Bradshaw
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-26
    Description: A new heterotrophic strain, named Providencia sp. JAT-1, was isolated and used in bioleaching of low-grade complex copper ore. The strain uses sodium citrate as a carbon source and urea as a nitrogen source to produce ammonia. The optimal growth condition of the strain is 30 C, initial pH 8, sodium citrate 10 g/L and urea 20 g/L, under which the cell density and ammonia concentration in the medium reached a maximum of 4.83 × 108 cells/mL and 14 g/L, respectively. Ammonia produced by the strain is used as the main lixiviant in bioleaching. Bioleaching results revealed that higher strain growth led to a higher copper recovery, while higher pulp density will cause a greater inhibitory effect on strain growth and ammonia production. The copper extraction reached the highest value of 54.5% at the pulp density of 1%. Malachite, chrysocolla and chalcocite are easy to leach out in this bioleaching system while chalcopyrite is difficult. Results of comparative leaching experiments show that bioleaching using JAT-1 is superior to ammonia leaching at the same condition. The metabolites produced by the strain other than ammonia are also involved in bioleaching.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-12
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...