ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-12-09
    Description: Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: Conservative Detrending applies mathematical functions to correct for decreasing ring-widths with age; Basal Area Correction transforms diameter into basal-area growth; Regional Curve Standardization detrends individual tree-ring series using average age/size trends; and Size Class Isolation calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring dataset of Melia azedarach , a tropical tree species from Thailand. Three GDMs yielded similar results – a growth decline over time – but the widely used Conservative Detrending method did not detect any change. Second, we assessed the sensitivity (probability of correct growth trend detection), reliability (1- probability of detecting false trends), and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade), and weak trends (-2%, +2%). All methods except Conservative Detrending, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. Basal Area Correction showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend-detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend Size Class Isolation and Regional Curve Standardization, as these methods showed highest reliability to detect long-term growth trends. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Conifers growing at high elevations need to optimize their stomatal conductance (gs) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high‐elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site‐ and species‐specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is 〉2 times higher, shows a more plastic response to temperature, and down‐regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site‐specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species‐specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: Abstract Conifer trees possess a typical anatomical tree‐ring structure characterized by a transition from large and thin‐walled earlywood tracheids to narrow and thick‐walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall‐thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree‐ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...