ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The need for longer and more labor-intensive extra-vehicular activities (EVA) is required for construction and maintenance of the International Space Station (ISS). Issues pertaining to human performance while wearing a space suit (EMU) for prolonged periods have become more important. This project was conducted to investigate how a pressurized Extra-vehicular Mobility Unit (EMU) affects human upper body joint strength and fatigue and how to predict it from computer models based on the data collected.
    Keywords: Man/System Technology and Life Support
    Type: Bioastronautics Investigators'' Workshop 2001; Jan 01, 2001; Galveston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Currently, NASA does not have sufficient in-flight anthropometric data to assess the impact of changes in body shape and size. For developing future planetary and reduced-gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry and body posture to ensure optimal crew performance, fit, and comfort. To obtain data on these changes, circumference, length, height, breadth, and depth for body segments (chest, waist, bicep, thigh, calf) from astronauts for preflight, in-flight, and post-flight conditions needs to be collected. Once these data have been collected, pre-flight, in-flight, and post-flight anthropometric values will be compared, yielding microgravity factors. The neutral body posture (NBP) will also be measured, to determine body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress but has been completed for 6 out of 9 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes were collected during Skylab 4, the Apollo-Soyuz Test Project (ASTP), Space Shuttle mission STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab 4, ASTP, and the STS-57 studies found that, according to photographs, a distinct NBP exists. The still photographs showed a distinguishable posture with the arms raised and the shoulders abducted; in addition, the knees are flexed, with noticeable hip flexion, and the foot is plantar flexed [1,2]. This combination is considered to be the standard set of body joint angles for an NBP in microgravity. A recent simulated microgravity NBP study [3] showed individual variability and inconsistencies in defining NBP. This variation may be influenced by spinal growth, and other potential anthropometry factors such as spinal curvature, age, and gender. Data on the variation of this posture data is required for all kinds of space device designs (such as suits, habitat, and mobility aids). The method proposed in this study considers the dynamic nature of body movement and will use a measurement technique to continually monitor posture and develop a probability likelihood of the neutral posture and how the NBP postures are affected by anthropometry. Additionally, Skylab studies found that crewmembers experienced a stature growth of up to 3 percent. The data included 3 crewmembers and showed that a biphasic stature growth occurs once the crewmember enters into weightlessness. However, the HRP Spinal Elongation study showed that crewmembers could experience about a 6 percent growth in seated height and a 3 percent stature growth, when exposed to microgravity. The results of that study prove that not all anthropometric measurements have the same microgravity percent growth factor. For EVA and suit engineers to properly update the sizing protocol for microgravity, they need additional anthropometric data from space missions. Hence, this study is aimed at gathering additional in-flight anthropometric measurements, such as length, depth, breadth, and circumference, to determine the changes to body shape and size caused by microgravity effects. It is anticipated that by recording the potential changes to body shape and size, NASA will develop a better suit sizing protocol for the International Space Station and other space missions. In essence, this study will help NASA quantify the impacts of microgravity on anthropometry to ensure optimal crew performance, fit, and comfort. This study will use standard anthropometry data collection techniques, 3D laser scanning, digital still photography, and video data, and perform photogrammetric analyses to determine the changes that occur to the body shape and size, and to NBP, when the human body is exposed to a microgravity environment.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34601 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by two with the commander and pilot seats on the top and the two remaining seats underneath, thereby limiting the amount of clearance for the crewmembers seated in the bottom seat. The inner mold line of these types of vehicles are fixed due to other design constraints; therefore, it is essential that all seats incorporate additional clearance to account for adequate spinal growth thereby ensuring that the crew can safely ingress the seat and be strapped in prior to its return to earth. If there is not enough clearance to account for spinal growth deltas between seats then there is the potential that crewmembers will not be able to comfortably and safely fit into their seats. The crewmember in the bottom stacked seat may even have negative clearance with the seat above him or her which could lead to potential ingress/egress issues or potentially injury of the crewmember during landing. These impacts are specific to these types of vehicles with stacked seat configuration. Without proper knowledge of the amount of spinal elongation, or growth, which occurs due to microgravity and space flight, the design of future vehicle(s) or suits may cause injury, discomfort, and limit crew accommodation and crew complements. The experiment primarily aimed to collect seated height data for subjects exposed to microgravity environments, and feed new information regarding the effect of elongation of the spine forward into the design of the Orion. The data collected during the experiment included, two seated height measurement and two digital pictures of seated height pre-, in-, and post-flight. In addition to seated height, crewmembers had an optional task of collecting stature , standing height. Seated height data was obtained from 29 crewmembers that included 8 ISS increment crew (2 females and 6 males) and 21 Shuttle crew (1 female, 20 males), and whose mean age was 48 years ( 4 years). This study utilized the last six Shuttle flights, STS-128 to STS-134. The results show that partipating crewmembers experienced growth up to 6% in seated height and up to 3% in stature. Based on the worst case statistical analysis of the subject data, the recommended seated height growth of 6% will be provided to the designers as the necessary seated height adjustment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25133 , NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44 injured during 11,704 ground EVA training events. Of the 196 glove related injury incidents, 106 related to EVA and 90 to EVA training. Over these 196 incidents, 277 total injuries (126 flight; 151 training) were reported and were then grouped into 23 types of injuries. Of EVA flight injuries, 65% were commonly reported to the hand (in general), metacarpophalangeal (MCP) joint, and finger (not including thumb) with fatigue, abrasion, and paresthesia being the most common injury types (44% of total flight injuries). Training injuries totaled to more than 70% being distributed to the fingernail, MCP joint, and finger crotch with 88% of the specific injuries listed as pain, erythema, and onycholysis. Of these training injuries, when reporting pain or erythema, the most common location was the index finger, but when reporting onycholysis, it was the middle finger. Predictor variables specific to increased risk of onycholysis included: female sex (OR=2.622), older age (OR=1.065), increased duration in hours of the flight or training event (OR=1.570), middle finger length differences in inches between the finger and the EVA glove (OR=7.709), and use of the Phase VI glove (OR=8.535). Differentiation between training and flight and injury reporting during 2002-2004 were significant control variables. For likelihood of time to first onycholysis injury, there was a 24% reduction in rate of reporting for each year increase in age. Also, more experienced crewmembers, based on number of EVA flight or training events completed, were less likely to report an onycholysis injury (3% less for every event). Longer duration events also found reporting rates to occur 2.37 times faster for every hour of length. Crewmembers with larger hand size reported onycholysis 23% faster than those with smaller hand size. Finally, for every 1/10th of an inch increase in difference between the middle finger length and the glove, the rate of reporting increased by 60%. DISCUSSION: One key finding was that the Series 4000 glove had a lower injury risk than the Phase VI, which provides a platform for further evaluation. General interventions that reduce hand overexertion and repetitive use exposure through tool development, procedural changes and shorter exposures may be one mitigation path, but due to the way the training event times were reported, we cannot provide a guideline for a specific event duration change. When the finger length was different from the glove length, the risk of injury increased indicating that the use of larger finger take-ups could be contributing to injury and therefore may not be recommended. Prior to this investigation, there was one previous investigation indicating hand anthropometry may be related to onycholysis. We found different hand anthropometry variables indicated by this investigation as compared to the prior, specifically differences in middle finger length compared to glove finger length, which point more towards a sizing issue than a specific anthropometry issue. Additionally, although this investigation has identified sizing as an issue, the force and environmental-related variables of the EVA glove that could also cause injury were not accounted for.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: JSC-CN-32235 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.
    Keywords: Aerospace Medicine; Computer Programming and Software
    Type: JSC-CN-40675 , Annual NASA Human Research Investigators'' Workshop (HRP IWS) 2018; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Currently, NASA does not have sufficient in-flight anthropometric data gathered to assess the impact of physical body shape and size changes on suit sizing. For developing future planetary and reduced gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry, body posture, and neutral body postures (NBP) to ensure optimal crew performance, fit, and comfort. To obtain these impacts, anthropometric data, circumference, length, height, breadth, and depth for body segments (i.e. chest, waist, bicep, thigh, calf) from astronauts for pre, in-, and postflight conditions needs to be collected. Once this data has been collected, a comparison between pre, in-, and postflight anthropometric values will be analyzed, yielding microgravity factors. The NBP will be used to determined body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress with the completion of 3 out of 12 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes have been during Skylab, STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab and the STS-57 studies found that there is a distinct neutral body posture (NBP) based on photographs. The still photographs showed that there is a distinguishable posture with the arms raised and the shoulder abducted; and, in addition, the knees were flexed with noticeable hip flexion and the foot plantar flexed [1,2]. This is the one standard set of body joint angles for a NBP in microgravity. A recent simulated microgravity NBP study [3] has shown an individual variability and inconsistencies in defining NBP. This variation may be influenced by spinal growth, the type of suit fit, and other potential anthropometry factors such as spinal curvature, age, and gender. The variation aspect of this essential data is required for all kinds of space device designs (e.g. suits, habitat, mobility aids, etc.). The method proposed considers the dynamic nature of body movement and will use a measurement technique to continually monitor posture and develop a probability likelihood of the natural posture and how the NBP postures are affected by anthropometry. Additionally, Skylab studies found that crewmembers experienced a stature growth of up to 3%. The data included 3 crewmembers that showed that there is a bi-phasic stature growth once the crew enters into weightlessness. However, the Spinal Elongation study identified that the crewmembers could experience about a 6% growth in seated height and a 3% stature growth, when exposed to microgravity. The results prove that not all anthropometric measurements have the same microgravity percent growth factor. For EVA and suit engineers to properly update the sizing protocol for microgravity, they need additional anthropometric data from space missions. Hence, this study is aimed to gather additional in-flight anthropometric measurements, such as length, depth, breadth, and circumference, to determine the changes to body shape and size due to microgravity effects. It is anticipated that by recording the potential changes to body shape and size, a better suit sizing protocol will be developed for ISS and other space missions. In essence, this study will help NASA quantify the impacts of microgravity on anthropometry to ensure optimal crew performance, fit, and comfort. This study will use simplistic data collection techniques, 3D laser scanning, digital still, and video data, and perform photogrammetric analyses to determine the changes that occur to the body shape, size, and NBP when exposed to a microgravity environment.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32163 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-vehicular Mobility Unit (EMU) and is worn by astronauts while working outside of their space craft in low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit) were measured while working at 100% and 80% of their maximum voluntary torque (MVT). It was found that the average decrease in the total amount of work done when the subjects were wearing the EMU was 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. In general the stronger joints took longer to fatigue and did more work than the weaker joints. However, it is not clear which joints are most affected by the EMU suit in terms of the amount of work done. The average amount of total work done increased by 5.2% and 20.4% for the unsuited and suited cases, respectively, when the subject went from working at 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% and 25.6% for the unsuited and suited cases, respectively, when the subjects went from working at 100% to 80% MVT. The EMU also decreased the joint range of motion. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average error in the predictions was found to be 18.3% and 18.9% for the unsuited and suited subject, respectively, working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subject, respectively, working at 80% MVT. These results could be very useful in the design of future EMU suits, and planning of Extra-Vehicular Activit). (EVA) for the upcoming International Space Station assembly operations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6412
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-14
    Description: The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-Vehicular Mobility Unit (EMU) and is worn by astronauts while working outside their spacecraft in a low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit in 1G gravity) were measured while working at 100% and 80% of their maximum voluntary torque (MVT, which is synonymous with maximum voluntary contraction (MVC)). It was found that the average decrease in the total amount of work (the sum of the work in each repetition until fatigue) done when the subjects were wearing the EMU were 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. Here, the time to fatigue is defined as the ending time of the repetition for which the computed work done during that repetition dropped below 50% of the work done during the first repetition. In general the stronger joints took longer to fatigue and did more work than the weaker joints. It was found that the EMU decreases the work output at the wrist and shoulder joints the most, due to the EMU joint geometry. The EMU also decreased the joint range of motion. The average total amount of work done by the test subjects increased by 5.2% (20.4%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% (25.6%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average errors in the predictions were found to be 18.3% and 18.9% for the unsuited and suited subjects, respectively, when working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subjects, respectively, when working at 80% MVT. These results could be very useful in the design of future EMU suits and the planning of Extra-Vehicular Activity (EVA) for the future International Space Station assembly operations.
    Keywords: Man/System Technology and Life Support
    Type: Ergonomics (ISSN 0014-0139); 45; 7; 484-500
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from thirties to fifties, the age category most affected was in the forties range. Incident rate calculations (incidents per 100 training runs) revealed that the 2002, 2003, and 2004 time periods registered the highest reported incident rate levels (3.4, 6.1, and 4.1 respectively) when compared to the following years (all 1.0). In addition to general hand-arm discomfort being the highest reported result from training, specific types of hand injuries or symptoms included erythema, fingernail delamination, abrasions, muscle soreness/fatigue, paresthesia, bruising, blanching, and edema. Specific body locations most affected by hand injuries included the metacarpophalangeal joints, fingernails, finger crotches, fingers in general, interphalangeal joints, and fingertips. Causes of injuries reported in the LSAH data were primarily attributed to the forces that the gloved hands were exposed to due to hand intensive tasks and/or poor glove sizing. DISCUSSION: Although the age data indicate that most injuries are reported by male crewmembers in their forties, that is also the dominant gender and age range of most EVA crew therefore it is not an unexpected finding. Age and gender analysis will continue as more details on the uninjured population is accrued. While there is a reasonable mechanism to link training quantity to injury, the results were inconsistent and point to the need for a consistent method of suit-related injury screening and documentation. For instance, the high-incident rate levels for the years 2002 to 2004 could be attributed to a comprehensive medical review of crewmembers post-NBL EVA training that occurred from July 19, 2002 to January 16, 2004. Furthermore, there could have been increased awareness from an investigation at the NBL. These investigations may have temporarily increased the fidelity of reported injuries and discomforts during these dates as compared to surrounding years, when injury signs and symptom were no longer actively being investigated but rather voluntarily reported. Data mining for possible mechanistic factors continues and includes more detailed training timelines, hand anthropometry, and suit sizing information. The limited published data looking at hand-arm anthropometry correlated hand-anthropometry metrics with injuries stemming from glove design and operation. Future work will include further evaluation of body sizing and fit in relation to hand injury incidents.
    Keywords: Aerospace Medicine
    Type: JSC-CN-30029 , 2014 NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 11, 2014 - Feb 13, 2014; Galveston, tX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...