ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2017-10-05
    Description: Geosciences, Vol. 7, Pages 99: Validity of the Apatite/Merrillite Relationship in Evaluating the Water Content in the Martian Mantle: Implications from Shergottite Northwest Africa (NWA) 2975 Geosciences doi: 10.3390/geosciences7040099 Authors: Ewa Słaby Hans-Jürgen Förster Richard Wirth Alicja Giera Łukasz Birski Izabela Moszumańska Phosphates from the Martian shergottite NWA 2975 were used to obtain insights into the source and subsequence differentiation of the melt/melts. The crystallization of two generations of fluorapatite (F > Cl~OH and F-rich), chlorapatite and ferromerrillite-merrillite were reconstructed from TEM (Transmission Electron Microscopy) and geochemical analyses. The research results indicated that the recognized volatiles budget of the two generations of fluorapatite was related to their magmatic origin. The apatite crystals crystallized from an evolved magma during its final differentiation and degassing stage. In turn, chlorapatite replaced ferromerrillite-merrillite and was not related to, mantle-derived shergottite magma. The relationship between merrillite and apatite indicates that apatite is most probably a product of merrillite reacting with fluids. REE (rare earth elements) pattern of Cl-apatite might point to an origin associated with exogenous fluids mixed with fluids exsolved from evolved magma. The study shows that, among the three types of apatite, only the fluorapatite (F > Cl~OH) is a reliable source for assessing the degree of Martian mantle hydration. The occurrence of apatite with merrillite requires detailed recognition of their relationship. Consequently, the automatic use of apatite to assess the water content of the magma source can lead to false assumptions if the origin of the apatite is not precisely determined.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Apatites from Martian nakhlites NWA 10153 and NWA 10645 were used to obtain insight into their crystallization environment and the subsequent postcrystallization evolution path. The research results acquired using multi-tool analyses show distinctive transformation processes that were not fully completed. The crystallization history of three apatite generations (OH-bearing, Cl-rich fluorapatite as well as OH-poor, F-rich chlorapatite and fluorapatite) were reconstructed using transmission electron microscopy and geochemical analyses. Magmatic OH-bearing, Cl-rich fluorapatite changed its primary composition and evolved toward OH-poor, F-rich chlorapatite because of its interaction with fluids. Degassing of restitic magma causes fluorapatite crystallization, which shows a strong structural affinity for the last episode of system evolution. In addition to the three apatite generations, a fourth amorphous phase of calcium phosphate has been identified with Raman spectroscopy. This amorphous phase may be considered a transition phase between magmatic and hydrothermal phases. It may give insight into the dissolution process of magmatic phosphates, help in processing reconstruction, and allow to decipher mineral interactions with hydrothermal fluids.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...