ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-07-25
    Description: Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha −1 a −1 ), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha −1
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-24
    Description: Africa’s savannahs and shrublands have been assumed to provide a large area for the expansion of cropland with relatively little damage to the environment. Research now shows that conversion would be likely to have high carbon and biodiversity costs. Nature Climate Change 5 481 doi: 10.1038/nclimate2584
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-25
    Description: The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this paper we assess the consequences of land use change on cropland. We first identify areas where cropland is so productive that it may never be converted, and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C 4 grass bioenergy crops, coppiced woody energy crops, or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land use change – we simply assess the best option in any given global location should a land use change occur. To do this we use global biomass potential studies based on food-crop productivity, forest inventory data, and Dynamic Global Vegetation Models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 AD. Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe-25, 48.4% in North America, 13.7% in South America, and 58.5% in Oceania. Fast growing C 4 Grasses such as Miscanthus and switch-grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C 4 grasses such as Miscanthus and switch-grass cultivars provide the best climate mitigation option on ≈ 485 Mha of cropland worldwide with ~ 42% of this land characterized by a terrain slope equal or above 20%. If that land use change did occur, it would displace ≈ 58.1 Pg fossil fuel C equivalent (C eq oil). Woody energy crops such as poplar, willow, and Eucalyptus species would be the best option on only 2.4% (≈ 26.3 Mha) of current cropland, and if this land use change occurred it would displace ≈ 0.9 Pg C eq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈ 17% of current cropland (≈ 184.5 Mha) and if this land use change occurred it would sequester ≈ 5.8 Pg C in biomass in the 20-year-old forest, and ≈ 2.7 Pg C in soil. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-22
    Description: With the Paris Agreement’s ambition of limiting climate change to well below 2 °C, negative emission technologies (NETs) have moved into the limelight of discussions in climate science and policy. Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools and performing an in-depth assessment of the quantitative and qualitative evidence therein. We clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time. There are six major findings arising from our assessment: first, keeping warming below 1.5 °C requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for the 2 °C warming limit. Second, accounting for economic and biophysical limits, we identify relevant pote...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-22
    Description: The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO 2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors’ assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mi...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-11
    Description: The political will to reduce global GHG emissions has largely contributed to increased global biofuel production and trade. The expanding cultivation of energy crops may drive changes in the terrestrial ecosystems such as land cover and biodiversity loss. When biomass replaces fossil energy carriers, sustainability criteria are therefore crucial to avoid adverse impacts and ensure a net positive GHG balance. The European Union has set mandatory sustainability criteria for liquid biofuels in its Renewable Energy Directive (RED) 2009/28/EC to ensure net positive impacts of its biofuel policy. The adoption of sustainability criteria in other world regions and their extension to solid and gaseous biomass in the EU is ongoing. This paper examines the effect of the EU RED sustainability criteria on the availability of biomass resources at global and regional scale. It quantifies the relevance of sustainability criteria in biomass resource assessments taking into account the criteria's spatial distribution. This assessment does not include agricultural and forestry residues and aquatic biomass. Previously unknown interrelations between sustainability criteria are examined and described for ten world regions. The analysis concludes that roughly 10% (98.5 EJ) of the total theoretical potential of 977.2 EJ occurs in areas free of sustainability concerns.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-08
    Description: [1]  Widespread cropland abandonment occurred after the collapse of socialism across the former Soviet Union, but the rates and spatial patterns of abandoned lands are not well known. As a result, the potential of this region to contribute to global food production and estimates of the carbon sink developing on currently idle lands are highly uncertain. We developed a spatial allocation model that distributes yearly and sub-national sown area statistics to the most agriculturally suitable plots. This approach resulted in new, high-resolution (1 km 2 ) annual time series of cropland and abandoned lands in European Russia, Ukraine and Belarus from 1990 to 2009. A quantitative validation of the cropland map confirms the reliability of this dataset, especially for the most important agricultural areas of the study region. Overall, we found a total of 87 Mha of cropland and 31 Mha of abandoned cropland in European Russia, Ukraine and Belarus combined, suggesting that abandonment has been severely underestimated in the past. The abandonment rates were highest in European Russia. Feeding our new map dataset into the dynamic vegetation model LPJmL revealed that cropland abandonment resulted in a net carbon sink of 470 TgC for 1990 to 2009. Carbon sequestration was generally slow in the early years after abandonment, but carbon uptake increased significantly after approximately 10 years. Recultivation of older abandoned lands would be associated with high carbon emissions and lead to substantial amounts of carbon not being sequestered in vegetation formations currently developing on idle croplands. Our spatially and temporally explicit cropland abandonment data improve the estimation of trade-offs involved in reclaiming abandoned croplands and thus in increasing agricultural production in this globally important agricultural region.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-09
    Description: Existing assessments of biomass supply and demand and their impacts face various types of limitations and uncertainties, partly due to the type of tools and methods applied (e.g. partial representation of sectors, lack of geographical details, aggregated representation of technologies involved). Improved collaboration between existing modeling approaches may provide new, more comprehensive insights, especially into issues that involve multiple economic sectors, different temporal and spatial scales or various impact categories. Model collaboration consists of aligning and harmonizing input data and scenarios, model comparison and/or model linkage. Improved collaboration between existing modeling approaches can help assess i) the causes of differences and similarities in model output, which is important for interpreting the results for policy-making, and ii) the linkages, feedbacks and trade-offs between different systems and impacts (e.g. economic and natural), which is key to a more comprehensive understanding of the impacts of biomass supply and demand. But, full consistency or integration in assumptions, structure, solution algorithms, dynamics and feedbacks can be difficult to achieve. And, if it is done, it frequently implies a trade-off in terms of resolution (spatial, temporal, structural) and/or computation. Three key research areas are selected to illustrate how model collaboration can provide additional ways for tackling some of the shortcomings and uncertainties in the assessment of biomass supply and demand and their impacts. These research areas are livestock production, agricultural residues and greenhouse gas emissions from land use change. Describing how model collaboration might look like in these examples, we show how improved model collaboration can strengthen our ability to project biomass supply, demand and impacts. This in turn can aid in improving the information for policy-makers and in taking better-informed decisions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...