ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-01
    Description: Forests are a major land use in Europe, and European forest soils contain about the same amount of carbon as is found in tree biomass. Changes in the size of the forest soil carbon pool could have significant impacts on the European carbon budget. We present the first assessment of future changes in European forest soil organic carbon (SOC) stocks using a dedicated process-based SOC model and state-of-the-art databases of driving variables. Soil carbon change was calculated for Europe using the Rothamsted Carbon model using climate data from four climate models, forced by four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in litter input to the soil due to forest management, projected changes in net primary production (NPP), forest age-class structure, and changes in forest area were taken into account. Results are presented for mineral soil only. Under some climate scenarios carbon in forest soils will increase slightly (0.1 to 4.6 Pg) in Europe over the 21st Century, whilst for one scenario, forest SOC stocks are predicted to decrease by 0.3 Pg. Different trends are seen in different regions. Climate change will tend to speed decomposition, whereas increases in litter input due to increasing NPP and changing age-class structure will slow the loss of SOC. Increases in forest area could further enhance the total soil carbon stock of European forests. Whilst climate change will be a key driver of change in forest soil carbon, changes in ageclass structure and land-use change are estimated to have greater effects. Key words: Soil organic carbon, Europe, climate change, forest management, land-use change, Rothamsted Carbon model, EFISCEN model, LPJ model
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-18
    Description: The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a ?coalition of the willing? towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for ...
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-08
    Description: The current state of the art in erosion research does not provide answers about the “where” and “when” of wind erosion in European agricultural lands. Questions about the implications for the agricultural productivity remain unanswered. Tackling this research gap, the study provides a more comprehensive understanding of the spatial patterns of land susceptibility to wind erosion in European agricultural lands. The Index of Land Susceptibility to Wind Erosion (ILSWE) was applied in a GIS environment. A harmonized input dataset ranked following a fuzzy logic technique was employed. Within the 36 European countries under investigation, moderate (17.3 million ha) and high levels (8.8 million ha) of land susceptibility to wind erosion were predicted. This corresponds to 8.0% and 4.1% of total agricultural land, respectively.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-22
    Description: The competing demand for food and bioenergy requires new solutions for the agricultural sector as, for instance, the coupling of energy production from gasification technology and the application of the resulting biochar as soil amendment. A prerequisite for the implementation of this strategy is the scale-specific assessment of both the energetic performance and of the impacts in terms of greenhouse gases (GHG) emission and crop responses. This study considered the gasification process developed by Advanced Gasification Technology (AGT, Italy), which is a fixed-bed, down-draft, open core, compact gasifier, having 350 kW of nominal electric capacity (microgeneration); this gasifier uses biomass feedstock deriving from agricultural/forest products and byproducts. In this study, the resulting biochar, derived from conifer wood chips of mountain forestry management in North-western Italy, was applied to a nearby paddy rice field, located in the largest rice agricultural area of Europe. We performed a Life Cycle Analysis (LCA) adapting the BEAT2 model specifically focusing on the GHG balance of the supply chain, from the forestry management to the field distribution of the resulting biochar. The results indicated that the gasification stage had the highest impact in the supply chain in terms of emissions, but net emissions allocated to biochar were always negative (ranging between −0.54 and −2.1 t CO 2 e t −1 biochar), hypothesizing two scenarios of 32% and 7.3% biochar mineralization rate in soil, over a time period of 100 years. Finally, biochar had a marginal but positive effect on rice yield, thus increasing the sustainability of this energy-biochar chain.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Seventeen Sustainable Development Goals (SDGs) were adopted by 193 Governments at the General Assembly of the United Nations in 2015 for achievement by 2030. These SDGs present a roadmap to a sustainable future and a challenge to the science community. To guide activities and check progress, targets and indicators have been and are still being defined. The soil science community has published documents that describe the primary importance of soil for SDGs addressing hunger, water quality, climate mitigation and biodiversity preservation, and secondary relevance of soil for addressing several other SDGs. Soil scientists only marginally participated in the SDG discussions and are currently only peripherally engaged in discussions on targets or indicators. Agreement on several soil‐related indicators has still not been achieved. Involvement of soil scientists in SDG‐based studies is desirable for both developing solutions and increasing the visibility of the soil profession. Inputs into policy decisions should be improved as SDG committee members are appointed by Governments. Possible contributions of soil science in defining indicators for the SDGs are explored in this paper. We advocate the pragmatic use of soil–water–atmosphere–plant simulation models and available soil surveys and soil databases where “representative” soil profiles for mapping units (genetically defined genoforms) are functionally expressed in terms of several phenoforms reflecting effects of different types of soil use and management that strongly affect functionality.
    Print ISSN: 0266-0032
    Electronic ISSN: 1475-2743
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-19
    Description: Bottom-up estimates from long-term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large-scale or different assumptions and information utilised for running models. In this context, a pan-European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonised datasets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion to grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4-0.8 t C ha −1 y −1 , while the opposite extreme scenario (100% of grassland conversion to arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101-336 Mt CO 2 eq. by 2020 and 549-2141 Mt CO 2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta-analysis confirmed the robustness of these estimates. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-10
    Description: Sustainability, Vol. 10, Pages 2380: Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils Sustainability doi: 10.3390/su10072380 Authors: Panos Panagos Cristiano Ballabio Emanuele Lugato Arwyn Jones Pasquale Borrelli Simone Scarpa Alberto Orgiazzi Luca Montanarella In the European Union (EU), copper concentration in agricultural soil stems from anthropogenic activities and natural sources (soil and geology). This manuscript reports a statistical comparison of copper concentrations at different levels of administrative units, with a focus on agricultural areas. Anthropogenic sources of diffuse copper contamination include fungicidal treatments, liquid manure (mainly from pigs), sewage sludge, atmospheric deposition, mining activities, local industrial contamination and particles from car brakes. Sales of fungicides in the EU are around 158,000 tonnes annually, a large proportion of which are copper based and used extensively in vineyards and orchards. Around 10 million tonnes of sewage sludge is treated annually in the EU, and 40% of this (which has a high copper content) is used as fertilizer in agriculture. In the EU, 150 million pigs consume more than 6.2 million tonnes of copper through additives in their feed, and most of their liquid manure ends up in agricultural soil. These three sources (sales of fungicides, sewage sludge and copper consumption for pigs feed) depend much on local traditional farming practices. Recent research towards replacing copper spraying in vineyards and policy developments on applying sewage and controlling the feed given to pigs are expected to reduce copper accumulation in agricultural soil.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-26
    Description: IntroductionA framework is developed to link major soil functions to ecosystem services assessment. Provisioning soil functions---with primary linkages to ecosystem services---are evaluated on a continental scale in Europe. Methods: We defined major provisioning soil functions combining the approaches proposed by the Millennium Ecosystem Assessment and the Thematic Strategy for Soil Protection of the European Union. Soil productivity was evaluated by three main land use types (cropland, grassland, forest) using a validated expert model called SoilProd. Models include soil, climate and topographic criteria. Raw material provision capacity of soils was assessed on the basis of (i) organic carbon content and (ii) availability of soil materials for construction. Results: A coherent system of soil function-based ecosystem services was compiled, taking into account major soil functions. We also produced new data on soil-based provisioning ecosystem services, including productivity and raw material availability. The attempts to cover the main human activities requiring materials of soil origin and to map the locations where those materials are available on a continental scale provide new insight to this field of research. Conclusions: Soil-based ecosystem services can be assessed by the evaluation of soil functions which play a role in the production of these services. Quantitative analysis and comparison of the spatial distribution of the investigated soil functions were performed.While crop productivity showed a general trend to increase in a northward and westward direction, local soil quality in most regions---except in the Mediterranean---can compensate for climatic handicaps to a great extent.Comparison of areas with potential for providing ecosystem services by individual soil functions highlights the complexity of decision-making for resource utilization but also the possibilities for optimization and more conscious management.
    Electronic ISSN: 2192-1709
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-17
    Description: The trade-off between the growing need for large scale soil information and its high cost could be resolved by a widespread use of visible and infrared spectroscopy. A recent workshop by the European Commission – Joint Research Centre (EC-JRC) and the Food and Agriculture Organization (FAO), focused on the measures to foster the global monitoring of soils based on spectroscopy. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract The world's largest afforestation programs implemented by China made a great contribution to the global “greening up.” These programs have received worldwide attention due to its contribution towards achieving the United Nations Sustainable Development Goals. However, emerging studies have suggested that these campaigns, when not properly implemented, resulted in unintended ecological and water security concerns at the regional scale. While mounting evidence shows that afforestation causes substantial reduction in water yield at the watershed scale, process‐based studies on how forest plantations alter the partitioning of rainwater and affect water balance components in natural vegetation are still lacking at the plot scale. This lack of science‐based data prevents a comprehensive understanding of forest‐related ecosystem services such as soil conservation and water supply under climate change. The present study represents the first ‘Paired Plot’ study of the water balance of afforestation on the Loess Plateau. We investigate the effects of forest structure and environmental factors on the full water cycle in a typical multi‐layer plantation forest composed of black locust, one of the most popular tree species for plantations worldwide. We measure the ecohydrological components of a black locust versus natural grassland on adjacent sites. The startling finding of this study is that, contrary to the general belief, the understory – instead of the overstory – was the main water consumer in this plantation. Moreover, there is a strict physiological regulation of forest transpiration. In contrast to grassland, annual seepage under the forest was minor in years with an average rainfall. We conclude that global long‐term greening efforts in drylands require careful ecohydrologic evaluation so that green and blue water tradeoffs are properly addressed. This is especially important for reforestation‐based watershed land management, that aims at carbon sequestration in mitigating climate change while maintaining regional water security, to be effective on a large scale.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...