ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2013-09-21
    Description: [1]  Marine cloud brightening through sea spray injection has been proposed as a method of temporarily alleviating some of the impacts of anthropogenic climate change, as part of a set of technologies called geoengineering. We outline here a proposal for three coordinated climate modeling experiments to test aspects of sea spray geoengineering, to be conducted under the auspices of the Geoengineering Model Intercomparison Project (GeoMIP). The first, highly idealized, experiment ( G1ocean-albedo ) involves a uniform increase in ocean albedo to offset an instantaneous quadrupling of CO 2 concentrations from preindustrial levels. Results from a single climate model show an increased land-sea temperature contrast, Arctic warming, and large shifts in annual mean precipitation patterns. The second experiment ( G4cdnc ) involves increasing cloud droplet number concentration in all low-level marine clouds to offset some of the radiative forcing of an RCP4.5 scenario. This experiment will test the robustness of models in simulating geographically heterogeneous radiative flux changes and their effects on climate. The third experiment ( G4sea-salt ) involves injection of sea spray aerosols into the marine boundary layer between 30°S and 30°N to offset 2 W m -2 of the effective radiative forcing of an RCP4.5 scenario. A single model study shows that the induced effective radiative forcing is largely confined to the latitudes in which injection occurs. In this single model simulation, the forcing due to aerosol–radiation interactions is stronger than the forcing due to aerosol–cloud interactions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-04
    Description: [1]  The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment,G1, where the global mean radiative forcing is kept at pre-industrial conditions by reducing insolation while the CO 2 concentration is quadrupled, to a 4xCO 2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO 2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4xCO 2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to pre-industrial conditions. Global precipitation is reduced by around 4.5% and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%) and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4xCO 2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes, point to a considerable weakening of the hydrological cycle in a geoengineered world.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union (AGU), and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2018. Reviews of Geophysics is the top rated journal in Geophysics and Geochemistry and it could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate the time spent reading and commenting on manuscripts, and we are very grateful for your willingness and readiness to serve in this role. Reviews of Geophysics published 20 review papers and an editorial in 2018, covering most of the AGU Section topics, and for this we were able to rely on the efforts of 85 dedicated reviewers from 20 countries. Many reviewers answered the call multiple times. Thank you again. We look forward to a 2019 of exciting advances in the field and communicating those advances to our community and to the broader public.
    Print ISSN: 8755-1209
    Electronic ISSN: 1944-9208
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-03
    Description: [1]  The long-lasting 1783–1784 CE Laki flood lava eruption in Iceland released around 120 Tg of sulfur dioxide into the upper troposphere/lower stratosphere. Northern Hemisphere temperature proxy records of the 1780s indicate below-average temperatures for up to three years following the eruption. The very warm summer of 1783 in Europe, which was followed by a very cold winter, may have been caused by the eruption, but the mechanisms are not yet well understood. Some studies attributed the cold winter 1783–1784 to natural variability of climate. However, our climate model simulations show that the Laki radiative effects lasted long enough to contribute to the winter cooling. We suggest that sulfur isotopic composition measurements obtained using samples from Greenland ice cores do not provide evidence of either a short-lived volcanic aerosol cloud or a short-lived climatic impact of the Laki eruption. In fact, the applicability of mass-independent sulfur isotopic composition measurements for interpreting the climatic impact of any high-latitude eruption remains yet to be demonstrated.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-13
    Description: [1]  Recent modeling efforts suggest that the Little Ice Age (LIA) onset could be explained by a series of four large decadally-spaced volcanic eruptions. At that time, glaciers on Baffin Island advanced and did not retreat until the past century, perhaps due to Arctic and North Atlantic Ocean sea ice feedbacks. To try to determine what parameters sustain snow cover , we investigate the relative impacts of changes in radiation and advection on minimum summer snow extent over Baffin Island. We used the Weather Research and Forecasting (WRF) model to run eight 6-month long (April-September), 10-km resolution simulations, in which we varied boundary condition temperatures, solar radiation, and sea ice cover. Although the Control Run underestimated cloud cover and thus produced an exaggerated diurnal 2 m temperature cycle, the relative changes of snow extent show that the WRF accurately simulates snow expansion into the same regions as during the LIA. With an average temperature decrease from current temperatures by -3.9 ± 1.1 K, it only requires one season for the model to lower the snowline by comparable elevation changes seen during the descent into the LIA. WRF's maximum snow line sensitivity is 7 K/km, within the range of the typically assumed lapse rate of 5-7 K/km in the Canadian Arctic. Thus, if a shift in the Arctic climate greatly expanded sea ice coverage following large volcanic eruptions, this would have been enough to perpetuate an ice sheet on Baffin Island throughout the LIA.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-25
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-04
    Description: Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC a−1 injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60°C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-09
    Description: The European Space Agency launched the Soil Moisture Ocean Salinity (SMOS) satellite in November 2009. Using SMOS soil moisture retrievals for 2010 processed using algorithm V4.00, we evaluated SMOS retrievals by comparing them to in situ soil moisture observations for the top 5 cm at several stations in the Great Plains of the U.S. A major issue with comparing the satellite data with in situ data is that a SMOS footprint is about 40 km across and we compare to point observations. To address this issue, we chose locations in Oklahoma that have 10 to 25 different in situ observations within each SMOS footprint. The SMOS retrievals have a dry bias when compared to the average of all in situ stations in a footprint. Large differences exist between the in situ observations, even for probes only a few meters apart. Observations from different sensors within a SMOS footprint differ from each other by a larger amount than they differ from the SMOS retrieval. Removing the mean and normalizing the data bring the in situ observations into better agreement with each other and with SMOS but there are still substantial differences. Agricultural Research Service Micronet regions in Oklahoma had highly varying values of soil moisture despite being in close proximity to one another, but when averaged and compared to SMOS they had less of a bias than the other regions. Further north in the Great Plains, SMOS retrievals of top 5 cm soil moisture from descending orbits were consistently about 5% by volume wetter than ascending retrievals.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-07
    Description: We test how the time of year of a large Arctic volcanic eruption determines the climate impacts by conducting simulations with a general circulation model of Earth's climate. For eruptions injecting less than about 3 Tg of SO2 into the lower stratosphere, we expect no detectable climatic effect, no matter what the season of the eruption. For an injection of 5 Tg of SO2 into the lower stratosphere, an eruption in the summer would cause detectable climate effects, whereas an eruption at other times of the year would cause negligible effects. This is mainly due to the seasonal variation in insolation patterns and sulfate aerosol deposition rates. In all cases, the sulfate aerosols that form get removed from the atmosphere within a year after the eruption by large-scale deposition. Our simulations of a June eruption have many similar features to previous simulations of the eruption of Katmai in 1912, including some amount of cooling over Northern Hemisphere continents in the summer of the eruption, which is an expected climate response to large eruptions. Previous Katmai simulations show a stronger climate response, which we attribute to differences in choices of climate model configurations, including their specification of sea surface temperatures rather than the use of a dynamic ocean model as in the current simulations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-16
    Description: [1]  The Geoengineering Model Intercomparison Project (GeoMIP) was designed to determine robust climate system model responses to solar geoengineering. GeoMIP currently consists of four standardized simulations involving reduction of insolation or increased amounts of stratospheric sulfate aerosols. Three more experiments involving marine cloud brightening are planned. This project has improved confidence in the expected climate effects of geoengineering in several key areas, such as the effects of geoengineering on spatial patterns of temperature and the spatial distribution of precipitation, especially extreme precipitation events. However, GeoMIP has also highlighted several important research gaps, such as the effects on terrestrial net primary productivity and the importance of the CO 2 physiological effect in determining the hydrologic cycle response to geoengineering. Future efforts will endeavor to address these gaps, as well as encourage cooperation with the chemistry modeling communities, the impact assessment communities, and other groups interested in model output.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...