ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five-year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermo-stabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exceptions were Grilled pork Chop and Chicken Noodle Soup whose individual components appeareddegrade rapidly over one year of storage. Finally, most vitamins appeared to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at 35C. It was previously believed that the imprecise method of fortification would prove problematic for nutrient quantification; however, this was only an issue in stored samples of Grilled Pork Chop, Italian Vegetables and Curry Sauce with Vegetables. Year two data may further reveal the extent to which this is a problem, as well as identify overall quality changes over time.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37794 , NASA HRP Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Several dwarf tomato and pepper varieties were evaluated under International Space Station (ISS)-simulated growth conditions (22 degrees Centigrade, 50 percent relative humidity, 1500 parts per million CO2, and 300 micromoles per square meter per second of light for 16 hours per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet 'N' Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (up to 106 days for tomato and 109 days for pepper) using Turface (arcillite) potting media with 18-6-8 control-release fertilizer and supplemental nutrient solution beginning around 60-days-age. Tomato fruits were harvested when they showed full red color, beginning around 70-days age and then at weekly intervals thereafter, while peppers were grown until fruits showed color and were harvested twice (first test) and just once at the end of the second test, with the final harvests including colored and green fruit. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) content, vitamin K, phenolics, lycopene (for tomato), anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were grown again and the harvested fruit sent to NASA's Johnson Space Center for sensory evaluation, which included overall acceptability, appearance, color intensity, aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as candidates for testing in space. Weightings gave maximum importance to plant size (smaller being good) and fruit yield (greater yields being good). For tomato, the ranking was 1) cultivar Mohamed and cultivar Red Robin (tied), and 3) cultivar Sweet N' Neat. For pepper, the ranking was 1) cultivar Pompeii, 2) cultivar Red Skin, and 3) cultivar Fruit Basket. These rankings are somewhat subjective but provide a starting point for conducting higher fidelity testing with these crops (e.g., testing with light emitting diode lighting similar to the Veggie plant unit on ISS), and ultimately conducting a flight experiment.
    Keywords: Man/System Technology and Life Support; Life Sciences (General)
    Type: KSC-E-DAA-TN27964 , Human Research Program Investigator''s Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The processed and prepackaged spaceflight food system is a critical human support system for manned space flights. As missions extend longer and farther from Earth over the next 20 years, strategies to stabilize the nutritional and sensory quality of food must be identified. For a mission to Mars, the space foods themselves must maintain quality for up to 5 years to align with cargo prepositioning scenarios. Optimizing the food system to achieve a 5year shelf life mitigates the risk of an inadequate food system during extended missions. Because previous attempts to determine a singular pathway to a 5year shelf life for food were unsuccessful, this investigation combines several approaches, based on science, technological advancement, and past empirical evidence, to determine their potential to extend the shelf life of the prepackaged food system for long duration missions. This study may identify food processing, packaging, and storage technologies that will be required for exploration missions and the extent that they must be implemented to achieve a 5year shelf life for the entire food system.
    Keywords: Life Sciences (General)
    Type: JSC-E-DAA-TN68683 , Institute of Food Technologists; Jun 02, 2019 - Jun 05, 2019; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40588 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore we are challenged to reduce the mass of the food system by 10% while maintaining safety, nutrition, and acceptability to support crew health and performance for exploration missions. Meal replacement with nutritionally balanced, 700-900 calorie bars was identified as a method to reduce mass. However, commercially available products do not meet the requirements for a meal replacement in the spaceflight food system. The purpose of this task was to develop a variety of nutritionally balanced, high quality, breakfast replacement bars, which enable a 10% food mass savings. To date, six nutrient-dense meal replacement bars have been developed, all of which meet spaceflight nutritional, microbiological, sensory, and shelf-life requirements. The four highest scoring bars were evaluated based on final product sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. color and texture), and microbiological compliance over a period of two years to predict long-term acceptability. All bars maintained overall acceptability throughout the first year of storage, despite minor changes in color and texture. However, added vitamins C, B1, and B9 degraded rapidly in fortified samples of Banana Nut bars, indicating the need for additional development. In addition to shelf-life testing, four bar varieties were evaluated in the Human Exploration Research Analog (HERA), campaign 3, to assess the frequency with which actual meal replacement options may be implemented, based on impact to satiety and psychosocial measurements. Crewmembers (n=16) were asked to consume meal replacement bars every day for the first fifteen days of the mission and every three days for the second half of the mission. Daily surveys assessed the crew's responses to bar acceptability, mood, food fatigue and perceived stress. Preliminary results indicate that the majority of crew members were noncompliant with daily meal replacement during the first half of the mission. Several crew members chose to forgo the meal, resulting in caloric deficits that were higher on skipped-bar days. Body mass loss was significant throughout the mission. Although there was no significant difference in body mass loss overall between the first half and second half of the mission, a higher number of individual crew members lost more body mass in the first half of the mission. Analysis is still ongoing, but current trends suggest that daily involuntary meal replacement can lead to greater individual impacts on body mass and psychological factors, while meal replacement on a more limited basis may be acceptable to most crew for missions up to 30 days. This data should be considered in Orion mass trades with health and human performance.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: JSC-CN-40656 , Human Research Program Investigator''s Workshop (HRP IWS); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermostabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exception was Grilled pork Chop and Chicken Noodle Soup whose individual components appear to degrade rapidly over one year of storage. Finally, most vitamins appear to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at 35C. It was previously believed that the imprecise method of fortification would prove problematic for nutrient quantification; however this was only an issue in stored samples of Grilled Pork Chop, Italian Vegetables and Curry Sauce with Vegetables. Year two data may further reveal the extent to which this is a problem, as well as identify overall quality changes over time.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34794 , Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: NASA, in planning for long duration missions, has an imperative to provide a food system with the necessary nutrition, acceptability, and safety to ensure sustainment of crew health and performance. The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore we are challenged to reduce the mass of the food system by 10% while maintaining safety, nutrition, and acceptability for exploration missions. Food bars have previously been used to supplement meals in the Skylab food system, indicating that regular consumption of bars will be acceptable. However, commercially available products do not meet the requirements for a full meal replacement in the spaceflight food system. The purpose of this task is to develop a variety of nutritionally balanced breakfast replacement bars, which meet spaceflight nutritional, microbiological, sensorial, and shelf-life requirements, while enabling a 10% food mass savings. To date, six nutrient-dense meal replacement bars have been developed, using both traditional methods of compression as well as novel ultrasonic compression technologies developed by Creative Resonance Inc. (Phoenix, AZ). All bars will be prioritized based on acceptability and the four top candidates will be evaluated in the Human Exploration Research Analog (HERA) to assess the frequency with which actual meal replacement options may be implemented. Specifically, overall impact to mood, satiety, dietary discomfort, and satisfaction with food will be analyzed to inform successful implementation strategies. In addition, these bars will be evaluated based on final product sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. water activity and texture), and microbiological compliance over two years of storage at room temperature and potential temperature abuse conditions to predict long-term acceptability. It is expected that this work will enable a successful meal replacement strategy to be implemented that maintains crew food consumption and health, while informing exploration missions with appropriate mass savings expectations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34786 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: This study aimed to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of two years. Findings will help to identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality were monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-38387 , NASA HRP Investigator''s Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-35367 , NASA HRP Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: NASA, in planning for long-duration missions, has an imperative to provide a food system with the necessary nutrition, acceptability, and safety to ensure sustainment of crew health and performance. The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore the team is challenged to reduce the mass of the food system by 10% while maintaining product safety, nutrition, and acceptability. Commercially available products do not meet the nutritional requirements for a full meal replacement in the spaceflight food system, and it is currently unknown if daily meal replacements will impact crew food intake and psychosocial health over time. The purpose of this study was to develop a variety of nutritionally balanced breakfast replacement bars that meet spaceflight nutritional, microbiological, sensorial, and shelf-life requirements, while enabling a 10% savings in food mass. To date, six nutrient-dense meal replacement bars (approximately 700 calories per bar) have been developed, using traditional methods of compression as well as novel ultrasonic compression technologies developed by Creative Resonance Inc. (Phoenix, AZ). The four highest rated bars were evaluated in the Human Exploration Research Analog (HERA) to assess the frequency with which actual meal replacement options may be implemented. Specifically, overall impact of bars on mood, satiety, digestive discomfort, and satisfaction with food. These factors are currently being analyzed to inform successful implementation strategies where crew maintain adequate food intake. In addition, these bars are currently undergoing shelf-life testing to determine long-term sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. water activity and texture), and microbiological compliance over two years of storage at room temperature and potential temperature abuse conditions to predict long-term acceptability. It is expected that this work will enable a successful meal replacement strategy to be implemented that will maintain crew food consumption and health, while informing exploration missions with appropriate mass savings expectations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37796 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...