ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-12-07
    Description: [1]  We present deep seismic reflection images along two profiles collected in 2006 in the Wharton Basin offshore northern Sumatra. The main profile is located sub-parallel to the Sumatran trench at a distance of 32–66 km. Faulting of the entire sedimentary section (strike-slip deformation sometimes accompanied by a dip-slip component) is imaged over two fracture zones of the extinct Wharton Spreading Center that prior studies have shown to be reactivated as left-lateral faults. The western fracture zone is associated with a wide region of strong basement topography, a difference in crustal thickness of ~1.5 km, and an age offset of 9 m.y. The epicenters of the 11 April 2012 M w 8.6 great strike-slip earthquake, its M w 7.2 foreshock and M w 8.2 aftershock align along this major structure 〉 100 km south of the profile intersection. Our high-quality long-offset seismic reflection data also reveal bright dipping reflections extending down to a maximum of ~24 km into the oceanic mantle (~37 km below sea level). Apparent dips are mostly 25-35°, corresponding to 30-55° along either N-S to NNE-SSW or E-W to WNW-ESE directions, which encompass the directions of plate fabric and nodal planes of the M w 8.6 event. We suggest that these enigmatic reflections arise from presently inactive dip-slip fault planes reaching for the deepest ones to the base of the brittle layer. Possible origins include extension related to plate bending or an episode of now inactive thrust-type deformation reactivating paleo-normal faults, similar to that taking place in the Central Indian Basin.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-08
    Description: The physical state of the shallow plate-boundary fault governs the updip extent of seismic rupture during powerful subduction zone earthquakes and thus on a first order impacts on the tsunamigenic hazard of such events. During the 2004 Mw 9.2 Aceh-Andaman Earthquake seismic rupture extended unusually far seaward below the accretionary prism causing the disastrous Indian Ocean Tsunami. Here we show that the formation of a strong bulk sediment section and a high fluid-pressured predécollement, that likely enabled the 2004 rupture to reach the shallow plate-boundary, result from thermally controlled diagenetic processes in the upper oceanic basement and overlying sediments. Thickening of the sediment section to 〉2 km ~160 km seaward of the subduction zone increases temperatures at the sediment basement interface and triggers mineral transformation and dehydration (e.g. smectite–illite) prior to subduction. The liberated fluids migrate into a layer that likely host high porosity and permeability and that is unique to the 2004 rupture area where they generate a distinct overpressured predécollement. Clay mineral transformation further supports processes of semi-lithification, induration of sediments, and coupled with compaction dewatering all amplified by the thick sediment section together strengthens the bulk sediments. Farther south, where the 2005 Sumatra Earthquake did not include similar shallow rupture, sediment thickness on the oceanic plate is significantly smaller. Therefore, similar diagenetic processes occur later and deeper in the subduction zone. Hence we propose that shallow seismic rupture during the 2004 earthquake is primarily controlled by the thickness and composition of oceanic plate sediments.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...