ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2011-07-21
    Description: The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-22
    Description: Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia) strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (E)TM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE) and a high absolute accuracy of 23 m (RMSE) for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-28
    Description: In the past, different approaches for automated landslide identification based on multispectral satellite remote sensing were developed to focus on the analysis of the spatial distribution of landslide occurrences related to distinct triggering events. However, many regions, including southern Kyrgyzstan, experience ongoing process activity requiring continual multi-temporal analysis. For this purpose, an automated object-oriented landslide mapping approach has been developed based on RapidEye time series data complemented by relief information. The approach builds on analyzing temporal NDVI-trajectories for the separation between landslide-related surface changes and other land cover changes. To accommodate the variety of landslide phenomena occurring in the 7500 km2 study area, a combination of pixel-based multiple thresholds and object-oriented analysis has been implemented including the discrimination of uncertainty-related landslide likelihood classes. Applying the approach to the whole study area for the time period between 2009 and 2013 has resulted in the multi-temporal identification of 471 landslide objects. A quantitative accuracy assessment for two independent validation sites has revealed overall high mapping accuracy (Quality Percentage: 80%), proving the suitability of the developed approach for efficient spatiotemporal landslide mapping over large areas, representing an important prerequisite for objective landslide hazard and risk assessment at the regional scale.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-19
    Description: This study combines spaceborne multitemporal and hyperspectral data to analyze the spatial distribution of surface evaporite minerals and changes in a semi-arid depositional environment associated with episodic flooding events, the Omongwa salt pan (Kalahari, Namibia). The dynamic of the surface crust is evaluated by a change-detection approach using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) based on the Landsat archive imagery from 1984 to 2015. The results show that the salt pan is a highly dynamic and heterogeneous landform. A change gradient is observed from very stable pan border to a highly dynamic central pan. On the basis of hyperspectral EO-1 Hyperion images, the current distribution of surface evaporite minerals is characterized using Spectral Mixture Analysis (SMA). Assessment of field and image endmembers revealed that the pan surface can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types are related to different zones of surface change as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. These combined information are used to spatially map depositional environments where the more dynamic halite crust concentrates in lower areas although stable gypsum and calcite/sepiolite crusts appear in higher elevated areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-16
    Description: Remote Sensing, Vol. 9, Pages 943: Evaluation of Remote-Sensing-Based Landslide Inventories for Hazard Assessment in Southern Kyrgyzstan Remote Sensing doi: 10.3390/rs9090943 Authors: Darya Golovko Sigrid Roessner Robert Behling Hans-Ulrich Wetzel Birgit Kleinschmit Large areas in southern Kyrgyzstan are subjected to high and ongoing landslide activity; however, an objective and systematic assessment of landslide susceptibility at a regional level has not yet been conducted. In this paper, we investigate the contribution that remote sensing can provide to facilitate a quantitative landslide hazard assessment at a regional scale under the condition of data scarcity. We performed a landslide susceptibility and hazard assessment based on a multi-temporal landslide inventory that was derived from a 30-year time series of satellite remote sensing data using an automated identification approach. To evaluate the effect of the resulting inventory on the landslide susceptibility assessment, we calculated an alternative susceptibility model using a historical inventory that was derived by an expert through combining visual interpretation of remote sensing data with already existing knowledge on landslide activity in this region. For both susceptibility models, the same predisposing factors were used: geology, stream power index, absolute height, aspect and slope. A comparison of the two models revealed that using the multi-temporal landslide inventory covering the 30-year period results in model coefficients and susceptibility values that more strongly reflect the properties of the most recent landslide activity. Overall, both susceptibility maps present the highest susceptibility values for similar regions and are characterized by acceptable to high predictive performances. We conclude that the results of the automated landslide detection provide a suitable landslide inventory for a reliable large-area landslide susceptibility assessment. We also used the temporal information of the automatically detected multi-temporal landslide inventory to assess the temporal component of landslide hazard in the form of exceedance probability. The results show the great potential of satellite remote sensing for deriving detailed and systematic spatio-temporal information on landslide occurrences, which can significantly improve landslide susceptibility and hazard assessment at a regional scale, particularly in data-scarce regions such as Kyrgyzstan.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...