ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mitigation and adaptation strategies for global change 5 (2000), S. 39-50 
    ISSN: 1573-1596
    Keywords: additionality ; baselines ; carbon sequestration ; certification ; risk ; sinks ; verification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Abstract Implementation of the Kyoto Protocol will require theestablishment of procedures for monitoring,verification and certification of carbon offsetprojects. In this paper, the steps required forindependent certification of forestry-based carbonoffset projects are reviewed, based on the proceduresused by the international certification companySociété Générale de Surveillance.Firstly, a project must be evaluated for itssuitability in relation to eligibility criteria of theKyoto Protocol. These eligibility criteria areclassified under four headings: (a) acceptability tohost country parties and international agreements; (b)additionality, in terms of demonstrated positivegreenhouse gas effects additional to the`business-as-usual' case; (c) externalities orunwanted side effects; and, (d) capacity to implementproject's activities. Secondly, the scientificmethodology for calculating the carbon offsets and themethodology for data collection and statisticalanalysis must be evaluated. Additionally, the amountof carbon offsets quantified must be adjusted toreflect the uncertainty associated with themethodology and data used. Only when these steps havebeen completed can carbon offsets be certified.Finally, the paper discusses the importance ofstandardization of methods and procedures used forproject monitoring and verification, and the need foraccreditation to ensure that the activities ofcertifiers are regulated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mitigation and adaptation strategies for global change 5 (2000), S. 51-60 
    ISSN: 1573-1596
    Keywords: carbon accounting ; carbon sequestration ; carbon sinks ; carbon storage ; equivalence time ; equivalence factor ; permanence ; tonne.year
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Abstract Concern about the issue of permanence andreversibility of the effects of carbon sequestrationhas led to the need to devise accounting methods thatquantify the temporal value of storing carbon that hasbeen actively sequestered or removed from theatmosphere, as compared to carbon stored as a resultof activities taken to avoid emissions. This paperdescribes a method for accounting for the atmosphericeffects of sequestration-based land-use projects inrelation to the duration of carbon storage. Firstly,the time period over which sequestered carbon shouldbe stored in order to counteract the radiative forcingeffect of carbon emissions was calculated, based onthe residence time and decay pattern of atmosphericCO2, its Absolute Global Warming Potential. Thistime period was called the equivalence time, andwas calculated to be approximately 55 years. From thisequivalence time, the effect of storage of 1 tCO2 for 1 year was derived, and found to besimilar to preventing the effect of the emission of0.0182 tCO2. Potential applications of thistonne.year figure, here called the equivalencefactor, are then discussed in relation to theestimation of atmospheric benefits over time ofsequestration-based land use projects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mitigation and adaptation strategies for global change 5 (2000), S. 239-270 
    ISSN: 1573-1596
    Keywords: carbon dioxide ; deforestation ; discount rate ; global warming ; greenhouse effect ; land-use change ; mitigation ; time preference
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Abstract Many proposed activities formitigating global warming in the land-use change and forestry(LUCF) sector differ from measures to avoid fossilfuel emissions because carbon (C) may be held out ofthe atmosphere only temporarily. In addition, thetiming of the effects is usually different. Many LUCFactivities alter C fluxes to and from the atmosphereseveral decades into the future, whereas fossil fuelemissions avoidance has immediate effects. Non-CO2 greenhouse gases (GHGs), which are animportant part of emissions from deforestation inlow-latitude regions, also pose complications forcomparisons between fossil fuel and LUCF, since themechanism generally used to compare these gases(global warming potentials) assumes simultaneousemissions. A common numeraire is needed to expressglobal warming mitigation benefits of different kindsof projects, such as fossil fuel emissions reduction,C sequestration in forest plantations, avoideddeforestation by creating protected areas and throughpolicy changes to slow rates of land-use changes suchas clearing. Megagram (Mg)-year (also known as`ton-year') accounting provides a mechanism forexpressing the benefits of activities such as these ona consistent basis. One can calculate the atmosphericload of each GHG that will be present in each year,expressed as C in the form of CO2 and itsinstantaneous impact equivalent contributed by othergases. The atmospheric load of CO2-equivalent Cpresent over a time horizon is a possible indicator ofthe climatic impact of the emission that placed thisload in the atmosphere. Conversely, this index alsoprovides a measure of the benefit of notproducing the emission. One accounting methodcompares sequestered CO2 in trees with theCO2 that would be in the atmosphere had thesequestration project not been undertaken, whileanother method (used in this paper) compares theatmospheric load of C (or equivalent in non-CO2GHGs) in both project and no-project scenarios.Time preference, expressed by means of a discount rateon C, can be applied to Mg-year equivalencecalculations to allow societal decisions regarding thevalue of time to be integrated into the system forcalculating global warming impacts and benefits. Giving a high value to time, either by raising thediscount rate or by shortening the time horizon,increases the value attributed to temporarysequestration (such as many forest plantationprojects). A high value for time also favorsmitigation measures that have rapid effects (such asslowing deforestation rates) as compared to measuresthat only affect emissions years in the future (suchas creating protected areas in countries with largeareas of remaining forest). Decisions on temporalissues will guide mitigation efforts towards optionsthat may or may not be desirable on the basis ofsocial and environmental effects in spheres other thanglobal warming. How sustainable development criteriaare incorporated into the approval and creditingsystems for activities under the Kyoto Protocol willdetermine the overall environmental and social impactsof pending decisions on temporal issues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-13
    Description: More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-03-01
    Print ISSN: 0378-1127
    Electronic ISSN: 1872-7042
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...