ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 2305-2327, doi:10.1175/BAMS-D-15-00274.1.
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Description: PZ, BK, and RM acknowledge support from NOAA Grant NA14OAR4310278, and PZ acknowledges support from NSF AGS-1233874. BM acknowledges support from the Regional and Global Climate Modeling Program of the U.S. Department of Energy’s Office of Science, Cooperative Agreement DE-FC02-97ER62402. PC acknowledges support from U.S. NSF Grants OCE-1334707 and AGS-1462127, and NOAA Grant NA11OAR4310154. PC also acknowledges support from China’s National Basic Research Priorities Programme (2013CB956204) and the Natural Science Foundation of China (41222037 and 41221063). TF acknowledges support from NSF Grant OCE-0745508 and NASA Grant NNX14AM71G. PB acknowledges support from the BMBF SACUS (03G0837A) project. TT and PB acknowledge support from the European Union Seventh Framework Programme (FP7 20072013) under Grant Agreement 603521 for the PREFACE Project. ES and ZW acknowledge support from NSF AGS-1338427, NOAA NA14OAR4310160, and NASA NNX14AM19G; and ES is grateful for further support from the National Monsoon Mission, Ministry of Earth Sciences, India.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 126 (1988), S. 137-140 
    ISSN: 1420-9136
    Keywords: anomaly models ; linear diagnostic models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract It is shown that the anomaly model governing the difference between two integrations of the equations of motion can be written in a form that is formally linear in the anomalies, by choosing the basic state to be the mean of the results of the two integrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 14 (1996), S. 336-341 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A flaw is pointed out in the manner in which flux correction is currently applied to coupled atmosphere-ocean general circulation models. If a transient climate simulation were carried out using perfect initial data and a perfect model, then a perfect simulation would be made. However, if the model were flux corrected so that it is in equilibrium for current conditions, according to current practice, then errors in the simulation would grow initially to a finite amplitude and persist indefinitely. Larger errors would be produced by a simulation with the flux corrected model beginning from pre-industrial conditions than by a simulation beginning from current conditions. An example with a simple linear model is constructed to illustrate this point, and the relationship to the cold start problem is demonstrated. An optimal flux correction for the simple example is shown to be one which would eliminate the error in the current climate from a transient simulation begun sufficiently far in the past.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-01
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-06-01
    Print ISSN: 0921-8181
    Electronic ISSN: 1872-6364
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-01
    Description: Simulations of regional monsoon regimes, including the Indian, Australian, West African, South American, and North American monsoons, are described for the T85 version of the Community Climate System Model version 3 (CCSM3) and compared to observations and Atmospheric Model Intercomparison Project (AMIP)-type SST-forced simulations with the Community Atmospheric Model version 3 (CAM3) at T42 and T85. There are notable improvements in the regional aspects of the precipitation simulations in going to the higher-resolution T85 compared to T42 where topography is important (e.g., Ethiopian Highlands, South American Andes, and Tibetan Plateau). For the T85 coupled version of CCSM3, systematic SST errors are associated with regional precipitation errors in the monsoon regimes of South America and West Africa, though some aspects of the monsoon simulations, particularly in Asia, improve in the coupled model compared to the SST-forced simulations. There is very little realistic intraseasonal monsoon variability in the CCSM3 consistent with earlier versions of the model. Teleconnections to the tropical Pacific are well simulated for the South Asian monsoon.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-15
    Description: It is commonly assumed that a reasonable estimate of the SST-forced component of the observed atmospheric circulation is given by an atmospheric GCM (AGCM) forced with the observed SST. However, there are results that find different SST-forced responses from the observed, for example for the ENSO–monsoon relationship, and suggest that these differences are due to lack of coupling to the ocean rather than atmospheric model bias unrelated to coupling. Here, the coupling issue is isolated and examined through perfect model experiments. A coupled atmosphere–ocean GCM (CGCM) simulation and an AGCM simulation forced by the SST from the CGCM are compared to examine whether the SST-forced responses are the same. This question cannot be addressed directly, since the SST-forced response of the CGCM is a priori unknown. Therefore, two indirect tests are applied, based on the assumption that the noise decorrelation time scale is short compared to a month. The first test is to compare the time-lagged linear regressions of the atmospheric fields onto several SST indices (defined as the area-averaged SST anomalies in the tropics or extratropics), with SST leading the atmosphere by a month. The second test is to compare the time lagged linear covariances of several atmospheric indices (including two monsoon indices and a North Atlantic Oscillation index) and SST, with the SST leading the atmosphere by a month. Both tests find that the SST-forced responses are the same in the CGCM and SST-forced AGCM. These tests can be extended to compare the SST-forced responses between different AGCMs, CGCMs, and observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-15
    Description: The annual cycle of sea surface temperature (SST) in the tropical Atlantic of a directly coupled atmosphere–ocean general circulation model (CGCM) is decomposed into the parts forced by different surface fluxes (denoted as modes) for the two extreme months of March and August using forced ocean experiments. Almost all previous diagnostic work of the forcing of the SST annual cycle in the Atlantic has concentrated on the near-equatorial region. Here, the annual cycle is examined within the latitude range of 25°S–25°N to facilitate comparison with the interannual variability. The structure of the response to the different surface flux forcings bears some resemblance to the interannual SST modes in the tropical Atlantic, which are diagnosed using rotated empirical orthogonal function (REOF) analysis. Diagnosis of the forcing of the annual cycle modes and the interannual modes shows that they do not always have a common cause. Hence, the simple interpretation that the leading interannual modes are perturbations to the annual cycle is not always valid. In particular, the equatorial SST annual cycle mode is primarily driven by variations in vertical velocity while the equatorial interannual mode is associated with eastward-propagating thermocline anomalies and is forced by both thermocline anomalies and vertical velocity anomalies. As for the interannual modes, there exist off-equatorial annual cycle modes in both the Northern and Southern Hemispheres. The annual cycle off-equatorial mode in both hemispheres is shown to be primarily driven by heat flux variations. The Southern Hemisphere interannual mode is primarily driven by heat flux variations while the Northern Hemisphere interannual mode shows a strong influence of thermocline depth anomalies. In addition, the Southern Hemisphere interannual mode is centered about 10° south of the annual cycle mode. An interannual mode that has maximum variability along the South American coast south of the equator is shown to be associated with thermocline depth anomalies. This interannual mode has no analog in the annual cycle modes. The coupled model simulation of the annual cycle is found to be fairly realistic so that the results presented here could have applicability to the observed Atlantic.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-31
    Description: The relationship between coupled atmosphere–ocean general circulation model simulations and uncoupled simulations made with specified SST and sea ice is investigated using the Community Climate System Model, version 3. Experiments are carried out in a perfect model framework. Two closely related questions are investigated: 1) whether the statistics of the atmospheric weather noise in the atmospheric model are the same as in the coupled model, and 2) whether the atmospheric model reproduces the SST-forced response of the coupled model. The weather noise in both the coupled and uncoupled simulations is found by removing the forced response, as determined from the uncoupled ensemble, from the atmospheric field. The weather-noise variance is generally not distinguishable between the coupled and uncoupled simulations. However, variances of the total fields differ between the coupled and uncoupled simulations, since there is constructive or destructive interference between the SST-forced response and weather noise in the coupled model but no correlation between the SST-forced and weather-noise components in the uncoupled model simulations. Direct regression estimates of the forced response show little difference between the coupled and uncoupled simulations. Differences in local correlations are explained by weather noise because weather noise forces SST in the coupled simulation only. The results demonstrate and explain an important intrinsic difference in precipitation statistics between the coupled and uncoupled simulations. This difference could have consequences for the design of dynamical downscaling experiments and for tuning general circulation models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-09-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...