ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    Minsk : Izdat. Universitetskoe
    Call number: MOP 47293 / Mitte
    Type of Medium: Monograph available for loan
    Pages: 286 S. : graph. Darst.
    Language: Russian
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-13
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s〈sup〉−1〈/sup〉) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s〈sup〉−1〈/sup〉 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with‐ and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf‐processes and advection of seasonal‐variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Description: Plain Language Summary: We assessed the structure and seasonal variability of the flow and water masses of the Arctic Boundary Current (ABC) in the region north of Severnaya Zemlya. This current is important in the Arctic Ocean as it transports relatively warm and saline waters along the Eurasian Arctic continental slope. We quantified the flow, transport and hydrographic variability of the ABC. Compared to observations from upstream, our results indicate that the water masses away from the shelf break maintained the hydrographic characteristics from upstream. In contrast, the water masses near the shelf break were significantly cooled and freshened due to intrusion of‐ and mixing with shelf waters. The water masses near the shelf break showed a seasonal signal in volume transport and temperature which derives from local shelf processes, advection of seasonal‐variable waters along the ABC pathway and the seasonal cooling of the Barents Sea. If the warming trend in the Barents Sea continues, warmer waters are expected to be advected eastward along the Eurasian continental slope by the ABC.
    Description: Key Points: We quantify the Arctic Boundary Current (ABC) transport north of Severnaya Zemlya with a 2015–2018 mooring array. Hydrographic changes along the ABC pathway are most prominent at the continental slope due to the interaction with shelf water. Seasonality of water masses from the shelf sea was observed in transport, temperature and off‐shelf excursions within the ABC.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: EC Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.pangaea.de/10.1594/PANGAEA.951363
    Description: https://doi.pangaea.de/10.1594/PANGAEA.951394
    Description: https://doi.pangaea.de/10.1594/PANGAEA.951394
    Description: https://doi.pangaea.de/10.1594/PANGAEA.954244
    Description: https://doi.pangaea.de/10.1594/PANGAEA.954249
    Description: https://doi.pangaea.de/10.1594/PANGAEA.954299
    Description: https://doi.pangaea.de/10.1594/PANGAEA.954352
    Keywords: ddc:551.48 ; Arctic Boundary Current ; seasonal transport variability ; water mass transport ; along‐slope current
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 8503-8513 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new scheme for solving the coupled cluster (CC) amplitude equations for ground and excited electronic states in the state-selective multireference (MR) CC method based on the complete active space (CAS) reference wave function (CASCC) is proposed. The CASCC wave function is generated using a single formal reference determinant, which is one of the CAS determinants, as the origin of the configuration expansion. Some single and double excitations from other CAS determinants may be triple, quadruple, and higher excitations from the reference determinant. We show that one may include the contribution from these higher excitations indirectly by modifying the coupled cluster amplitude equations corresponding to the single and double excitations. The modification involves including projections against the higher excitations in the equations for the singles and doubles. Test calculations for the ground and the first excited state of the H8-model system and for the singlet–triplet splitting of the CH2-biradical shows that the results improve with the use of the new scheme and become to the FCI benchmarks. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 9258-9268 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new multireference coupled-cluster method which includes double excitations and is based on the complete active space (CAS) multiconfigurational reference wave function is proposed. By partitioning the CAS orbitals into active and nonactive sets a two-component, coupled-cluster wave function involving excitations into orbitals of the different sets was constructed. The first component includes all the CAS excitations and the second component, which has the exponential form, consists of double external and semi-external excitations. The coupled-cluster equations for the energy and for the amplitudes involved in the two components of the wave function were derived and illustrated using a diagrammatic formalism. Several numerical tests were performed, and the results demonstrate a very good performance of the method as compared to the full configuration interaction results. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Oceanographic data covering the period 1950–1998 are used to determine interannual variations in the convection intensity and water mass structure in the Greenland Sea and adjacent areas. Extremely cold winters throughout 1965–1970 assisted intensification of the water vertical exchange in the Greenland and Norwegian seas. As a result, cold and fresh Greenland Sea Deep Water (GSDW) production was extremely high in the central Greenland Sea while in the southern Norwegian Sea warm and salty water spread downwards. The recent rapid warming in the Greenland Sea Gyre interior from 1980 originates, we argue, from an increase in the Atlantic Water (AW) temperature due to the advection of warm waters into the region with the Return Atlantic Current. The negative water temperature and salinity trends in the upper 300 m layer of the Atlantic Water in the Norwegian Sea prevailed during 1950–1990, whereas during 1980–1990 the water temperature trends are indicative of warming of that layer. Observation series obtained onboard the Ocean Weather Ship Mike confirmed the existence of layers with advectiondriven high oxygen concentrations in intermediate and deep layers. The depth of oxygen maxima and the values of oceanographic parameters at this horizon can be regarded as indicators of the convection intensity in the Arctic domain. A simultaneous rise in NAO index and GSDW temperature points to a link between atmospheric and thermohaline circulation. Weakening in water exchange with the North Atlantic could be the reason for the Polar Water recirculation increase within the Nordic seas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 373-376 (Aug. 2001), p. 417-420 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-1464
    Keywords: caspian sea ; black sea ; ctenophore ; mnemiopsis ; aurelia ; beroe ; butterfish ; caspian seal ; invasions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union, ISSN: 2169-9275
    Publication Date: 2018-09-20
    Description: Gradually decaying Arctic sea ice changes the boundary conditions at the surface, separating ocean and atmosphere. In recent years, substantial reductions in sea ice during winter have been observed in the Atlantic sector of the Arctic Ocean, which forms the gateway for warm water inflow from the midlatitudes. In this study, we used routine output from the Mercator Ocean global operational system (MOGOS) to assess the efficiency of winter thermohaline convection transporting heat from deep layers to the ocean surface along the Atlantic origin water (AW) pathway, between Svalbard and Franz Joseph Land in the Nansen Basin. Positive temperature extremes in the AW layer in midwinter promote favorable prerequisite conditions for deep‐reaching thermohaline convection, with explicit signs captured by the MOGOS. Balance equations with several assumptions for the compact region around the position (81.30°N, 31°E) of the long‐term (2004–2010) mooring demonstrated that winter heat loss at the ocean surface is mainly compensated by convective heat flux from the AW layer. Heat and salt fluxes, associated with horizontal advection, are compatible with convective fluxes, while contribution of ice formation/melt is substantially smaller. Conclusion about the dominant role of vertical convection in shaping thermohaline structure and reducing sea ice in winter is supported by correlation analysis of the MOGOS output and mooring‐based measurements. Unfavorable background conditions (thick and consolidated sea ice in combination with specific directions of ice drift) may significantly alter convection development, as demonstrated for two sequential years with substantially different external forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-02
    Description: The Atlantic Water flow from the Barents and Kara seas to the Arctic Ocean through the St. Anna Trough (SAT) is conditioned by interaction between Fram Strait branch water circulating in the SAT and Barents Sea branch water—both of Atlantic origin. Here we present data from an oceanographic mooring deployed on the eastern flank of the SAT from September 2009 to September 2010 as well as CTD (conductivity-temperature-depth) sections across the SAT. A distinct vertical density front over the SAT eastern slope deeper than ∼50 m is attributed to the outflow of Barents Sea branch water to the Arctic Ocean. In turn, the Barents Sea branch water flow to the Arctic Ocean is conditioned by two water masses defined by relative low and high fractions of the Atlantic Water. They are also traceable in the Nansen Basin downstream of the SAT entrance. A persistent northward current was recorded in the subsurface layer along the SAT eastern slope with a mean velocity of 18 cm s−1 at 134–218 m and 23 cm s−1 at 376–468 m. Observations and modeling suggest that the SAT flow has a significant density-driven component. It is therefore expected to respond to changes in the cross-trough density gradient conditioned by interaction between the Fram Strait and Barents Sea branches. Further modeling efforts are necessary to investigate hydrodynamic instability and eddy generation caused by the interaction between the SAT flow and the Arctic Ocean Fram Strait branch water boundary current.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-15
    Description: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...