ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of 〈i〉Trypanosoma brucei〈/i〉, a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: They form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of 〈i〉Trypanosoma brucei,〈/i〉 a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: they form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-26
    Description: Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of Trypanosoma brucei , a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: They form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.
    Keywords: Biochemistry, Molecular Biology, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-04-14
    Description: We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Boehringer, Daniel -- Frick, Christian -- Mikolasek, Bohdan -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):254-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431175" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism ; Acetyltransferases/metabolism ; Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/metabolism ; Amino Acid Sequence ; Ascomycota/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism ; Fatty Acid Synthases/*chemistry/metabolism ; Fungal Proteins/*chemistry/metabolism ; Hydro-Lyases/metabolism ; Models, Molecular ; Molecular Sequence Data ; NADP/chemistry ; Protein Conformation ; Protein Subunits/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-14
    Description: In the multifunctional fungal fatty acid synthase (FAS), the acyl carrier protein (ACP) domain shuttles reaction intermediates covalently attached to its prosthetic phosphopantetheine group between the different enzymatic centers of the reaction cycle. Here, we report the structure of the Saccharomyces cerevisiae FAS determined at 3.1 angstrom resolution with its ACP stalled at the active site of ketoacyl synthase. The ACP contacts the base of the reaction chamber through conserved, charge-complementary surfaces, which optimally position the ACP toward the catalytic cleft of ketoacyl synthase. The conformation of the prosthetic group suggests a switchblade mechanism for acyl chain delivery to the active site of the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leibundgut, Marc -- Jenni, Simon -- Frick, Christian -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):288-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431182" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/*chemistry/metabolism ; Acyltransferases/metabolism ; Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Fatty Acid Synthases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-06
    Description: Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabl, Julius -- Leibundgut, Marc -- Ataide, Sandro F -- Haag, Andrea -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):730-6. doi: 10.1126/science.1198308. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protozoan Proteins/chemistry/metabolism ; RNA, Messenger/chemistry ; RNA, Protozoan/chemistry ; RNA, Ribosomal, 18S/*chemistry ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/*chemistry/metabolism/*ultrastructure ; Signal Transduction ; Tetrahymena thermophila/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-02
    Description: Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 A resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 A resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Boehringer, Daniel -- Leibundgut, Marc -- Bieri, Philipp -- Leitner, Alexander -- Schmitz, Nikolaus -- Aebersold, Ruedi -- Ban, Nenad -- England -- Nature. 2014 Nov 13;515(7526):283-6. doi: 10.1038/nature13895. Epub 2014 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25271403" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents ; Cryoelectron Microscopy ; Mass Spectrometry ; Mitochondria/*chemistry/ultrastructure ; Mitochondrial Proteins/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Molecular Conformation ; Peptidyl Transferases/metabolism ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; Ribosome Subunits, Large/*chemistry/genetics/*ultrastructure ; Sus scrofa/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-24
    Description: Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 A resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Boehringer, Daniel -- Leitner, Alexander -- Bieri, Philipp -- Voigts-Hoffmann, Felix -- Erzberger, Jan P -- Leibundgut, Marc -- Aebersold, Ruedi -- Ban, Nenad -- England -- Nature. 2014 Jan 23;505(7484):515-9. doi: 10.1038/nature12890. Epub 2013 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biology, Institute of Molecular Biology and Biophysics, Schafmattstrasse 20, ETH Zurich, CH-8093 Zurich, Switzerland [2]. ; Department of Biology, Institute of Molecular Systems Biology, Wolfgang-Pauli-Strasse 16, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Biology and Biophysics, Schafmattstrasse 20, ETH Zurich, CH-8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, Wolfgang-Pauli-Strasse 16, ETH Zurich, CH-8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24362565" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cryoelectron Microscopy ; Hydrophobic and Hydrophilic Interactions ; Mass Spectrometry ; Mitochondria/*chemistry/ultrastructure ; Mitochondrial Proteins/chemistry/ultrastructure ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Ribosomal, 16S/chemistry/ultrastructure ; Ribosomal Proteins/chemistry/ultrastructure ; Ribosome Subunits/*chemistry/ultrastructure ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-03-04
    Description: All steps of fatty acid synthesis in fungi are catalyzed by the fatty acid synthase, which forms a 2.6-megadalton alpha6beta6 complex. We have determined the molecular architecture of this multienzyme by fitting the structures of homologous enzymes that catalyze the individual steps of the reaction pathway into a 5 angstrom x-ray crystallographic electron density map. The huge assembly contains two separated reaction chambers, each equipped with three sets of active sites separated by distances up to approximately 130 angstroms, across which acyl carrier protein shuttles substrates during the reaction cycle. Regions of the electron density arising from well-defined structural features outside the catalytic domains separate the two reaction chambers and serve as a matrix in which domains carrying the various active sites are embedded. The structure rationalizes the compartmentalization of fatty acid synthesis, and the spatial arrangement of the active sites has specific implications for our understanding of the reaction cycle mechanism and of the architecture of multienzymes in general.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Maier, Timm -- Ban, Nenad -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH Zurich), 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513976" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/chemistry/metabolism ; Ascomycota/*enzymology ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Fatty Acid Synthases/*chemistry/isolation & purification/metabolism ; Fatty Acids/biosynthesis ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-05-06
    Description: Riboswitches are untranslated regions of messenger RNA, which adopt alternate structures depending on the binding of specific metabolites. Such conformational switching regulates the expression of proteins involved in the biosynthesis of riboswitch substrates. Here, we present the 2.9 angstrom-resolution crystal structure of the eukaryotic Arabidopsis thaliana thiamine pyrophosphate (TPP)-specific riboswitch in complex with its natural ligand. The riboswitch specifically recognizes the TPP via conserved residues located within two highly distorted parallel "sensor" helices. The structure provides the basis for understanding the reorganization of the riboswitch fold upon TPP binding and explains the mechanism of resistance to the antibiotic pyrithiamine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thore, Stephane -- Leibundgut, Marc -- Ban, Nenad -- New York, N.Y. -- Science. 2006 May 26;312(5777):1208-11. Epub 2006 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Institute of Molecular Biology and Biophysics, 8092 Zurich, Switzerland. ban@mol.biol.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675665" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/*chemistry/*metabolism ; Arabidopsis/*chemistry/genetics ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Drug Resistance ; Genes, Plant ; Hydrogen Bonding ; Ligands ; Magnesium/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Pyrithiamine/pharmacology ; Thiamine Pyrophosphate/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...