ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-03-01
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-28
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-01
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-09-18
    Description: This paper describes an extreme flood event that occurred in the South Pare Mountains in northern Tanzania. A high spatial and temporal resolution data set has been gathered in a previously ungauged catchment. This data was analysed using a multi-method approach, to gather information about the processes that generated the flood event. On 1 March 2006, extreme rainfall occurred in the Makanya catchment, (300 km2), where up to 100 mm were recorded in Bangalala village in only 3 h. The flood was devastating, inundating large parts of the flood plain. The spatial variability of the rainfall during the event was very large, even in areas with the same altitude. The Vudee sub-catchment (25.8 km2) was in the centre of the rainfall event, receiving about 75 mm in 3 h divided over the two upstream tributaries: the Upper-Vudee and Ndolwa. The peak flow at the weir site has been determined using the slope-area method and gradually varied flow calculations, indicating a peak discharge of 32 m3 s−1. Rise and fall of the flood was very sharp, with the peak flow occurring just one hour after the peak of the rainfall. The flow receded to 1% of the maximum flow within 24 h. Hydrograph separation using hydrochemical parameters indicates that at the floodpeak 50% of the flow was generated by direct surface runoff (also indicated by the large amount of sediments in the samples), whereas the recession originated from displaced groundwater (〉90%). The subsequent base flow in the river remained at 75 l s−1 for the rest of the season, which is substantially higher than the normal base flow observed during the previous rainy seasons (15 l s−1) indicating significant groundwater recharge during this extreme event.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-27
    Description: Hydrological processes in small catchments are not quite understood yet, which is true in particular for catchments in data scarce, semi-arid regions. This is in contrast with the need for a better understanding of water fluxes and the interactions between surface- and groundwater in order to facilitate sustainable water resources management in such environments, where both floods and droughts can result in severe crop loss. In this study, event runoff coefficient analysis and limited tracer data of four small, nested sub-catchments (0.4–25.3 km2) in a data scarce, semi-arid region of Tanzania helped to characterize the distinct response of the study catchments and to gain insights into the dominant runoff processes. The estimated event runoff coefficients were very low and did not exceed 0.09. They were found to be significantly related to the 5-day antecedent precipitation totals as well as to base flow, indicating a close relation to changes in soil moisture and thus potential switches in runoff generation processes. The time scales of the "direct flow" reservoirs, used to compute the event runoff coefficients, were up to one order of magnitude reduced for extreme events, compared to "average" events, suggesting the activation of at least a third flow component, besides base- and direct flow, assumed to be infiltration overland flow. Analysis of multiple tracers highlighted the importance of pre-event water to total runoff, even during intense and high yield precipitation events. It further illustrated the distinct nature of the catchments, in particular with respect to the available water storage, which was suggested by different degrees of tracer damping in the individual streams. The use of multiple tracers subsequently allowed estimating uncertainties in hydrograph separations arising from the use of different tracers. The results highlight the presence of considerable uncertainties, emphasizing the need for multiple tracers in order to avoid misleading results. This study shows the value of hydrological data collection over one whole wet season using multi-tracers to improve the understanding of hydrological functioning and thus for water resources management in data scarce, semi-arid environments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-07
    Description: With a growing world population and a trend towards more resource-intensive diets, pressure on land and water resources for food production will continue to increase in the coming decades. Large parts of the world rely on rainfed agriculture for their food security. In Africa, 90% of the food production is from rainfed agriculture, generally with low yields and a high risk of crop failure. One of the main reasons for crop failure is the occurrence of dry spells during the growing season. Key indicators are the critical dry spell duration and the probability of dry spell occurrence. In this paper a new Markov-based framework is presented to spatially map the length of dry spells for fixed probabilities of non-exceedance. The framework makes use of spatially varying Markov coefficients that are correlated to readily available spatial information such as elevation and distance to the sea. The dry spell map thus obtained is compared to the spatially variable critical dry spell duration, based on soil properties and crop water requirements, to assess the probability of crop failure in different locations. The results show that in the Makanya catchment the length of dry spell occurrence is highly variable in space, even over relatively short distances. In certain areas the probability of crop failure reaches levels that make rainfed agricultural unsustainable, even close to areas where currently rainfed agriculture is successfully being practised. This method can be used to identify regions that are vulnerable to dry spells and, subsequently, to develop strategies for supplementary irrigation or rainwater harvesting.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-16
    Description: A solid understanding of the hydrological processes in a catchment is important in order to guarantee appropriate management of the available surface and groundwater resources, both in terms of quality and quantity. In order to achieve this, insights in the behaviour of the water fluxes and the interaction between groundwater and surface water is of utmost importance. This paper discusses the applicability and constraints of using hydrochemical and isotope tracers in identifying the runoff contributing sources at different scales in a semi-arid catchment in Tanzania. The hydrograph separation techniques shows that at the smallest scale (0.3 km2), for all types of tracers, the pre-event contribution is between 74–82%. At the larger scale (26 km2), two sub-catchments contribute to the flow at the weir site in Bangalala. Using the hydrochemical tracers the calculated contributions for the sub-catchments are in agreement with the catchment size and rainfall contributions over these two catchments. This showed that at the weir site 20% of the total flow comes from event water (of which 2% from Vudee sub-catchment and 18% from Ndolwa sub-catchment). The large difference is mainly due to preceding wetness conditions. However, with the isotope tracers no unambiguous results could be obtained. Two end members have been investigated to account for the ambiguous nature of the isotopic concentrations. The rainfall analysis shows that during the season the isotopical concentration changes, with a clear distinction between the two seasons. In addition, within one event the isotopic concentrations vary substantially within the area. The spring analysis also shows substantial temporal and spatial variation. The research therefore shows that the assumption of stable isotopic end-members was not met in our study. At the smaller scale the spatial variability could be neglected and the hydrograph separation technique could be applied, although for each event, end member concentrations needed to be collected to account for the temporal variability.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-10-15
    Description: With a growing world population and a trend towards more resource intensive diets, pressure on land and water resources for food production will continue to increase in the coming decades. Large parts of the world rely on rainfed agriculture for their food security. In Africa, 90% of the food production is from rainfed agriculture, generally with low yields and a high risk of crop failure. One of the main reasons for crop failure is the occurrence of dry spells during the growing season. Key indicators are the critical dry spell duration and the probability of dry spell occurrence. In this paper a new Markov-based framework is presented to spatially map the probability of dry spell occurrence. The framework makes use of spatially varying Markov coefficients that are correlated to readily available spatial information such as elevation and distance to the sea. This map is then related to the critical dry spell duration, based on soil properties and crop water requirements, to assess the probability of crop failure. The results show that in the Makanya catchment the probability of dry spell occurrence is highly variable in space, even over relatively short distances. In certain areas the probability of crop failure reaches levels, which makes rainfed agricultural practices unsustainable, even close to areas where currently rainfed agriculture is successfully practiced. This method can be used to identify regions that are vulnerable to dry spells, and subsequently to develop strategies for supplementary irrigation or rainwater harvesting.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-19
    Description: Integrated water resources management is a combination of managing blue and green water resources. Often the main focus is on the blue water resources, as information on spatially distributed evaporative water use is not as readily available as the link to river flows. Physically based, spatially distributed models are often used to generate this kind of information. These models require enormous amounts of data, which can result in equifinality, making them less suitable for scenario analyses. Furthermore, hydrological models often focus on natural processes and fail to account for anthropogenic influences. This study presents a spatially distributed hydrological model that has been developed for a heterogeneous, highly utilized and data-scarce river basin in eastern Africa. Using an innovative approach, remote-sensing-derived evapotranspiration and soil moisture variables for 3 years were incorporated as input data into the Spatial Tools for River basin Environmental Analysis and Management (STREAM) model. To cater for the extensive irrigation water application, an additional blue water component (Qb) was incorporated in the STREAM model to quantify irrigation water use. To enhance model parameter identification and calibration, three hydrological landscapes (wetlands, hillslope and snowmelt) were identified using field data. The model was calibrated against discharge data from five gauging stations and showed good performance, especially in the simulation of low flows, where the Nash–Sutcliffe Efficiency of the natural logarithm (Ens_ln) of discharge were greater than 0.6 in both calibration and validation periods. At the outlet, the Ens_ln coefficient was even higher (0.90). During low flows, Qb consumed nearly 50% of the river flow in the basin. The Qb model result for irrigation was comparable to the field-based net irrigation estimates, with less than 20% difference. These results show the great potential of developing spatially distributed models that can account for supplementary water use. Such information is important for water resources planning and management in heavily utilized catchment areas. Model flexibility offers the opportunity for continuous model improvement when more data become available.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-07
    Description: This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. The case study is a programme developed by the Mekong River Commission (MRC). A post-training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opportunities within the organisation). The design of the Capacity Building Programme of the MRC Flood Management and Mitigation Programme required a well balanced range of subjects (such as IWRM (integrated water resources management), model and decision support systems, and international water law). The post-training evaluation, 6 months after the last training workshop, showed an increase in familiarity with the topics for all 37 respondents, with the highest increase for the respondents with few years of working experience and from training and education institutions. The relevance of the subjects taught was highlighted by 95% of the respondents, and 78% of the participants had already used some of the acquired knowledge in their job. The respondents indicated that they did not have sufficient opportunities to apply all knowledge. The phased implementation and training of lecturers during the training workshops had a good impact, directly through increasing involvement in facilitation and delivery of the capacity building programme and through the use of the knowledge gained in short courses and development of curricula at their institute. For these types of capacity building programmes, a few recommendations can be made. The selection of participants is crucial for the application of the learned knowledge in their work. The integrative nature of transboundary water issues calls for a capacity building programme addressing a wide range of subjects, which can be understood by a wide range of professionals from different sectors. Training methods should also address this integrative nature through, e.g. roleplays and case studies. A successful capacity building programme needs to address the three levels of capacity building (enabling environment, organisations, and individual staff) and involve national and regional training and education institutes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...